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Abstract
Two special cases of the Minimum Committee Problem are studied, the Minimum

Committee Problem of Finite Sets (MCFS) and the Minimum Committee Problem of
a System of Linear Inequalities(MCLE). It is known that the first of these problems is
NP -hard (see [1]). In this paper we show the NP -hardness of two integer optimization
problems connected with it. In addition, we analyze the hardness of approximation to the
MCFS problem. In particular, we show that, unless NP ⊂ TIME(nO(log log n)), for every
ε > 0 there are no approximation algorithms for this problem with approximation ratio
(1 − ε) ln(m − 1), where m is the number of inclusions in the MCFS problem. To prove
this bound we use the SET COVER problem, for which a similar result is known [2]. We
also show that the Minimum Committee of Linear Inequalities System (MCLE) problem
is NP -hard as well and consider an approximation algorithm for this problem.

Key Words. Computational complexity, NP-completeness, Set Cover Problem, Graph
3-Colorability problem, Minimum Committee Problem, approximation algorithms.

Introduction

We consider a combinatorial optimization problem known as the Minimum Committee (MC)
problem. This problem is closely connected with three areas of the operations research: voting
theory, optimization, and pattern recognition. In the voting theory [3]-[5], several voting proce-
dures based on different logics (democracies) are studied. A committee is just a mathematical
model for the voting procedure based on the simple majority rule.

In pattern recognition, different collections of empirical algorithms are considered [6, 7]. So
called perceptron algorithms should be distinguished among them. As one can prove, the 2-
layer perceptron with non-negativity constraint for all weights of its second layer is just another
formulation for the committee discrimination rule.

Finally, in optimization a problem to be solved is often inconsistent [8]. There are several
reasons for this fact. In terms of linear programming, e.g., the problem is inconsistent when its
primal or dual (or both) constraints systems are infeasible. To correct this situation, one can
utilize several technics, e.g. Chebyshev approximation. The committee solutions technique is
one of them [1, 8, 9].

In all above cases it is desirable to find the most simple committee construction that leads
us to the Minimum Committee problem.
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1 Minimum Committee problem

Let some set X and m nonempty subsets D1, D2, . . . , Dm of X be given. Consider an abstract
system of inclusions in X

x ∈ Dj (j ∈ Nm = {1, 2, . . . ,m}) (1)

If there is an element x ∈ ⋂
j∈Nm

Dj then system (1) is called feasible and x is called a solution

of (1). Otherwise system (1) is called infeasible in the ordinary sense.
We call [1] a finite sequence Q = (x1, x2, . . . , xq) a committee solution with q elements (or

just a committee) of system (1) if

∣∣{i : xi ∈ Dj}
∣∣ >

q

2
, for all j ∈ Nm.

A committee solution of system (1) with a minimum number of elements q is called a minimum
committee solution. It is evident that if system (1) is feasible then every minimum committee
solution Q = (x) where x ∈ ⋂

j∈Nm

Dj. Therefore the notion of the minimum committee solution

is a generalization of the notion of the ordinary solution.

The Minimum Committee (MC) problem:

Let a ground set X and a finite collection of subsets D1, D2, . . . , Dm be given. Find
a committee solution for system (1) with a minimum number of elements q.

The MC problem is called feasible if and only if system (1) has any committee solution. Consider
the following example (see Figure 1). Here X = R3, m = 4, D1 is the plane ABC and D2, D3, D4

Figure 1: Example of a committee solution

are the segments AO, BO and CO, correspondingly. It can be easily verified that in this case
system (1) is infeasible but has committee solutions and the sequence Q = (A,B,C, O,O) is a
minimum committee solution.

It is useful to reformulate the MC problem in terms of the integer linear programming. As
usual, we call a maximal, by inclusion, feasible subsystem of an infeasible system a maximal
feasible subsystem (or mfs). Let J1, . . . , JT be the index sets of all maximal feasible subsystems
of system (1). Let us consider two m× T incidence matrices A and B, where

aji = 1, bji = 1 if j ∈ Ji,
aji = 0, bji = −1 otherwise
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and two programs

min
{
1 ′t | Bt ≥ 1 , t ∈ ZT

+

}
, (2)

min

{
s :

At ≥ s1 , t ∈ ZT
+

1 ′t ≤ 2s− 1, s ∈ N
}

. (3)

The following theorem is known.

Theorem 1 ([9]). Problems MC, (2) and (3) are simultaneously feasible or infeasible. The sets
of optimal solutions of problems (2) and (3) are isomorphically embedded into the solution set
of the MC problem.

In this paper, we consider two special cases of the MC problem:

1. The case of the problem, where the set X and all its subsets Dj are finite (we shall
call this problem the MCFS). We shall show that the MCFS problem is NP -hard and
the equivalent problems (2) and (3) have the same property. Also, we shall estimate an
approximation threshold of this problem.

2. The case, where the ground set X is an n-dimensional rational vector space Qn and
subsets Dj are open halfspaces. This problem will be called the MCLE. As shown below,
it is also NP -hard. We shall consider a new approximation algorithm, its approximation
ratio and computational complexity.

2 Minimum Committee of Finite Sets problem

In this section, we consider a special case of MC problem when all sets in system (1) are finite

The Minimum Committee of Finite Sets (MCFS) problem:

A finite set X = {x1, x2, . . . , xp} and a collection of its subsets D1, D2, . . . , Dm are
given. It is required to find a committee solution for system (1) with a minimum
number of elements q.

2.1 Computational complexity

Let us agree to encode an instance of the MCFS by m× p matrix C, where

cji =

{
1, if xi ∈ Dj,

−1, otherwise.

Further, without loss of a generality, we can assume that for any committee Q = (y1, y2, . . . , yq)
there are natural numbers k ≤ p, and q1, q2, . . . , qk, where

q1 + q2 + . . . + qk = q,

and
1 ≤ i1 < i2 < . . . < ik ≤ p
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such that
y1 = y2 = . . . = yq1 = xi1 ,
yq1+1 = . . . = yq1+q2 = xi2 ,

. . .
yq1+...+qk−1+1 = . . . = yq = xik .

Therefore, we can represent the sequence Q as a multiset in the form

{(xi1 , q1), (x
i2 , q2), . . . , (x

ik , qk)}.

The MCFS problem is a combinatorial one and there is no efficient algorithm for this problem
unless P = NP.

Theorem 2 ([1]). The MCFS problem is NP-hard.

Let us notice that the MCFS problem remains NP -hard even when every set Dj except,
maybe, one, satisfies the condition |Dj| ≤ 3.

Theorem 3. Problems MCFS, (2), and (3) are polynomially equivalent.

Proof. Let us prove that the MCFS and the integer program (2) can be polynomially reduced
to each other. Let an instance of the MCFS problem be given by the m×p matrix C. Let matrix
B consist of all undominatable columns of C. Matrix B can be constructed in a polynomial
time of m and p. Without loss of a generality, we assume that B consists of the first T columns
of C. The instance of problem (2) determined by the matrix B is a required one. Indeed, let
t̄ = [t̄1, t̄2, . . . , t̄T ] be the optimal solution of problem (2). Then, by virtue of the construction
of the matrix B, the sequence

Q̄ = {(xi, t̄i) | i ∈ NT , t̄i > 0}

is the required solution of the initial problem MCFS (minimum committee).
On the other hand, let the matrix B define an individual problem (2). Let us consider the

instance of the MCFS problem with C = B. Let

Q̄ = {(xi1 , q1), (x
i2 , q2), . . . , (x

ik , qk)}

be the minimum committee in the MCFS problem, then the vector t̄ ∈ ZT
+, where

tl =

{
qj, if l = ij,
0, otherwise,

is the optimal solution of problem (2).

Corollary 1. Problems (2) and (3) are NP-hard.

It is interesting that a statement like Theorem 2 does not hold for the general MC problem.
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2.2 Approximation threshold

A general issue in studying the NP -hard optimization problem is designing so-called approx-
imation algorithms. As usual, we call an algorithm for a combinatorial optimization problem
an approximation algorithm (with approximation ratio r) if for each instance

f ∗ = min{f(x) | x ∈ M}

of length L of the problem under consideration this algorithm finds a feasible solution xapp with

f(xapp)

f ∗
≤ r

in a polynomial time in L.
Another problem that should be considered in studying the NP -hard problem is to find a

threshold for which it can be proved that there are no approximation algorithms with ratios
less then this bound (under some reasonable assumptions, e.g. NP 6= P ). To prove the
existence such a threshold for the MCFS problem, we shall take advantage of known results for
the famous SET COVER problem.

The SET COVER problem:

Let a finite set S = {s1, s2, . . . , sm} and a nonempty collection of its subsets C =
{c1, c2, . . . , cl} ⊆ 2S be given. It is required to find a minimum cardinality subset
C ′ ⊆ C that covers S (i.e.,

⋃
ci∈C′

ci = S).

For the SET COVER problem the following results are known.

Theorem 4 ([10]). Unless P = NP there is no polynomial time algorithm that approximates
the set cover within ratio 1

4
log2 m.

Theorem 5 ([2]). If there is some ε > 0 such that a polynomial time algorithm can approximate
the set cover within (1− ε) ln m, then

NP ⊂ TIME(nO(log log n)).

A similar bound may be proved for the MCFS problem as well.

Lemma. The existence of an approximation algorithm with ratio r for the MCFS problem
implies the existence of a polynomial time algorithm that approximates the set cover within the
same ratio.

Proof.
1. Let us reduce the SET COVER problem to the MCFS. Let the sets S = {s1, s2, . . . , sm}
and C = {c1, c2 . . . , cl} be fixed. We are going to formulate an appropriate instance of the
MCFS problem in a polynomial time in l and m and demonstrate that for natural k there is a
cover C ′ ⊆ C, |C ′| = k, if and only if constructed instance of the MCFS problem has a feasible
committee solution of 2k − 1 elements.

Let us introduce the m× l incidence matrix A corresponding to S and C. As above,

aji =

{
1, if sj ∈ ci,
0, otherwise.
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x1 x2 . . . xl xl+1

c1 c2 . . . cl S
D1 s1 1
D2 s2 1
...

... A
...

Dm sm 1
Dm+1 C 1 1 · · · 1 0

Table 1: the construction of the instance of the MCFS problem

Now we shall consider a new (m + 1)× (l + 1) matrix A′ obtained from A by bordering with a
row and a column consisting of ones (see table 1). We will put its element in the right-bottom
corner equal to zero.
Let us consider the MCFS problem corresponding to the matrix A′. Namely, let us take a
ground set X = {x1, x2, . . . , xl+1} and its subsets according to

Dj = {xl+1} ∪ {xi : sj ∈ ci, i ∈ Nl} (j ∈ Nm)

Dm+1 = {x1, x2, . . . , xl}.

Let C ′ = {ci1 , ci2 , . . . , cik} be a cover, that is, for each j ∈ Nm there is

µ(j) ∈ Nk : sj ∈ ciµ(j)

or xiµ(j) ∈ Dj due to the construction. Hence, the sequence

Q = (xi1 , xi2 , . . . , xik , xl+1, . . . , xl+1

︸ ︷︷ ︸
k−1

)

is a committee solution for system (1) because each Dj contains at least k elements of Q.
On the other hand, let us consider the committee solution Q of system (1) with 2k − 1

elements, where
Q = (xi1 , xi2 , . . . , xi2k−1−λ , xl+1, . . . , xl+1

︸ ︷︷ ︸
λ

).

By the choice of the set Dm+1, we have λ < k. Thus, we take a k-subsequence of Q: (xi1 , . . . , xik).
For each j ∈ Nm there is

µ(j) ∈ Nk : xiµ(j)
∈ Dj,

since Q is a committee and, hence, sj ∈ ciµ(j)
by the construction of sets Dj. Therefore, the set

C ′ = {ciµ : µ ∈ Nk} is the required cover.
2. Let us suppose that there is an approximation algorithm A with ratio r for the MCFS

problem. It is known [1] that each committee with an even number of elements 2k can be
reduced to a committee of 2k− 1 elements removing any element. Let us consider an arbitrary
instance of the Set Cover problem; let t be the cardinality of its minimum cover. According to
procedure described above in a polynomial time one can construct an appropriate instance of
the MCFS problem such that

1). the number of elements of the minimum committee in this instance equals 2t− 1;

6



2). for every committee solution with 2k − 1 elements there is a cover with cardinality not
greater than k that can be found using the known committee in a polynomial time.

Suppose the algorithm A has found a committee solution of system (1) with 2k − 1 elements.
By the assumption about the ratio of the algorithm, we have

1 ≤ 2k − 1

2t− 1
≤ r.

Consequently, we obtain the following estimates:

k

t
≤ r

(
1− 1

2t

)
+

1

2t
≤ r

(
1− 1

2t

)
+

r

2t
≤ r.

Lemma is proved.

Theorem 6. Unless P = NP there is no approximation algorithm for the MCFS problem with
ratio 1

4
log2(m− 1).

Proof. Suppose the contrary. Let an algorithm A find a feasible solution of the MCFS problem
with accuracy 1

4
log2(m− 1). According to Lemma, there is an approximation algorithm for the

SET COVER problem that can find for |S| = m − 1 a cover not exceeding the optimal one
more than 1

4
log(m− 1) times, which according to Theorem 4 implies P = NP.

The following theorem is proved in a similar fashion.

Theorem 7. If NP 6⊂ TIME(nO(log log n)), then for each ε > 0 there is no polynomial time
algorithm for MCFS problem with approximation ratio (1− ε) ln(m− 1).

3 Minimum Committee of Linear Inequalities problem

Let a ground set be X = Qn and let its subsets Dj be open halfspaces

Dj = {x ∈ X | (aj, x) > 0} 0 6= aj ∈ X.

In this case, system (1) becomes

(aj, x) > 0 (j ∈ Nm). (4)

Minimum Committee of Linear Inequalities System (MCLE) problem:

Let naturals m and n and vectors a1, a2, . . . , am ∈ Qn be given. It is required to find
a committee solution of system (4) with a minimum number of elements.

The MCLE problem is interesting for at least two reasons. On the one hand, it has the
obvious applications in the statistical learning theory. On the other hand, it cannot be efficiently
solved using the reduction to equivalent integer linear programs (2) and (3). Indeed, to make
such a reduction, it is required to list all mfs of system (4) to be analyzed. However, this
enumeration problem is NP -hard according to the following Theorem 8.

The Densest Hemisphere (DH) problem:
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Let naturals m and n and vectors a1, a2, . . . , am ∈ Qn be given. It is required to find
the greatest mfs of system (4).

Theorem 8 ([11]). The DH problem is NP -hard.

Thus, the traditional computational complexity analysis scheme in the case of the MCLE
problem is ineffective. Let us notice that the technique based on the reduction to programs (2)
and (3) can be successfully utilized for solving the following closely related problem.

The Optimal Committee Improvement (COMIMP) problem:

Let naturals m and n and vectors

a1, a2, . . . , am, x1, x2, . . . , xq ∈ Qn

be given. It is required to find a subcommittee Q′ = (y1, y2, . . . , yq′) with the least
possible q′ ≤ q, where

yi ∈ {x1, x2, . . . , xq} (i ∈ Nq′).

3.1 Computational complexity

It is known [1] that the number of elements of the minimum committee solution of system
(4) can be used as a measure of its infeasibility. Therefore, the whole set of all systems of
linear inequalities can be covered by a countable set of concentric classes. The most narrow
class consists of feasible systems, each of them has a one element minimum committee solution.
This class is a subclass of the class of systems with 3-elements minimum committee solutions,
and so on.

It is important to design a fast algorithm that can find the most narrow class for each system
(4) containing this system. It is known that the problem of checking up the feasibility of system
(4) has a polynomial time algorithm. But, as is shown below, the problem of checking up the
existence of a 3-element committee solution of system (4) is NP -complete.

The 3-element Committee of the Linear Inequalities System (3-COMLE) problem:

Let naturals m and n and vectors a1, a2, . . . , am ∈ Qn be given. Does there exist a
committee solution of system (4) that consists of three elements?

Consider another combinatorial problem. Let G = (V, E) be a finite graph. As usual, we
say that a function f : V → Nk is a coloring of G with k colors if there is no ’monochromatic’
edge. That is |{f(v) | v ∈ e}| = 2 for every e ∈ E.

The Colorability of a Graph with 3 Colors (GRAPH 3-COLORABILITY) problem:

Let the finite graph G = (V,E) with V = {1, . . . , n}, be given. Does there exist a
coloring of the graph G with 3 colors?

It is known [12] that the GRAPH 3-COLORABILITY problem is NP -complete. We shall
prove that this problem can be reduced (by Karp) to the 3-COMLE problem.

Theorem 9. The 3-COMLE problem is NP -complete.
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Proof. The 3-COMLE problem belongs to the class NP, since it is possible to check up whether
the sequence Q = (x1, x2, x3) is a committee solution of system (4) in a polynomial time in its
length.

Let us consider the finite graph G = (V,E) with V = {1, . . . , n} setting the instance of
the GRAPH 3-COLORABILITY problem. Let us introduce the following system of linear
inequalities in Qn : {

xi + xj > 0 ({i, j} ∈ E)
xi < 0 (i ∈ V ).

(5)

System (5), obviously, can be constructed in a polynomial, in n, time. We shall prove that the
graph G can be colored with 3 colors if and only if system (5) has a committee solution of 3
elements. In the trivial cases (n < 3 or E = ∅), it is evident, that both problems have the same
answer ’Yes’.

Further, let the GRAPH 3-COLORABILITY have the answer ’Yes’, and let the partition

V1

·∪ V2

·∪ V3 = V set a coloring of G with 3 colors. It can be easily verified that the sequence
Q = (x1,2, x1,3, x2,3), where

xi,j
k =

{ −1, if k ∈ Vi ∪ Vj,
2, otherwise

({i, j} ⊂ N3, k ∈ Nn),

is a committee solution of system (5). Therefore, the 3-COMLE problem have the answer ’Yes’,
as well.

On the other hand, let the 3-COMLE problem have the answer ’Yes’, and let the sequence
Q = (x1, x2, x3) be a committee solution of system (5). Let us define the sets V1, V2 and V3 as
follows:

V1 = {i ∈ V : x1
i < 0, x2

i < 0},
V2 = {i ∈ V : x2

i < 0, x3
i < 0},

V3 = {i ∈ V : x3
i < 0, x1

i < 0}.
(6)

By the construction of Q, we have V1 ∪ V2 ∪ V3 = V. Without loss of generality, we can
assume that Vi 6= ∅ for i ∈ N3 and Vi ∩ Vj = ∅ for every i 6= j. We shall prove, that the sets
V1, V2, V3 determine a coloring of G with 3 colors (and the initial instance of the GRAPH 3-
COLORABILITY problem has the answer ’Yes’, as well). Indeed, let us assume on the contrary
that there is an edge e ∈ E, e = {i, j} such that e ∈ V1 (the cases of V2 and V3 can be considered
similarly). According to the definition of V1, we have

x1
i < 0, x2

i < 0, x1
j < 0, x2

j < 0,

therefore,
x1

i + x1
j < 0 and x2

i + x2
j < 0.

On the other hand, according to the definition of a committee solution, at least one of the
inequalities

x1
i + x1

j > 0 or x2
i + x2

j > 0

should be valid. The contradiction obtained proves the correctness of the coloring. The theorem
is proved.

Theorem 10. The MCLE problem is NP -hard.

The proof of the theorem is obtained as a corollary of Theorem 9 and the following Statement.
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Statement. The 3-COMLE problem can be reduced by Turing1 to the MCLE problem.

Proof. Let us consider an arbitrary instance of the 3-COMLE problem and assign to it an
appropriate instance of the MCLE problem. Let us solve the later problem with an arbitrary
algorithm and analyze the solution to be obtained. If system (4) has no committee solutions,
than the answer in the initial 3-COMLE problem is also ’No’. Otherwise, let the sequence
Q = (x1, . . . , xq) be the minimum committee of system (4). If q > 3 then the answer is ’No’ as
well. If q = 3, then Q is the required solution, and the answer is ’Yes’. Finally, let q = 1 and
Q = (x1). Let us take a vector z such that

(aj, z) 6= 0 (j ∈ Nm).

This vector can be found, obviously, in a polynomial time. The sequence Q = (x1, z,−z) is the
required committee solution, and the answer is ’Yes’, as well.

Remark 1. As is seen from the proof, the MCLE (3-COMLE) problem remains NP -hard (NP -
complete) if all coefficients of system (4) belong to the set {−1, 0, 1} and every inequality has
at most 3 nonzero coefficients.

Remark 2. The result of Theorems 9 and 10 can be extended to the case of a more general
system

(aj, x) Rj bj Rj ∈ {>, <,≥,≤} (j ∈ Nm).

Remark 3. Theorems 9 and 10 are true provided that n can take arbitrarily great values. Under
an additional upper bound on n, the 3-COMLE has a trivial polynomial time algorithm and
the MCLE problem can appear to be solvable in a polynomial time as well. For instance, it is
known [1] that the MCLE problem with the constraint n = 2 has a polynomial time algorithm.

3.2 Approximation algorithm

In this section, we consider a polynomial time approximation algorithm for the MCLE problem.
Let us introduce some additional constraints on system (4):

1). m > n > 2 and every subsystem of n inequalities is feasible;

2). |aj| = 1 for every j ∈ Nm;

3). m = 2k + n− 1 for some natural k.

The last constraint is introduced only for convenience of the further estimates (the case of
m = 2k + n can be considered similarly). Let us assign the following sets to vector x ∈ Qn :

J>(x) = {j ∈ Nm : (aj, x) > 0} ,

J<(x) = {j ∈ Nm : (aj, x) < 0} ,

J=(x) = {j ∈ Nm : (aj, x) = 0} .

Algorithm [13].

1in a polynomial time
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Step 1. Find any nontrivial solution z1 of the system

(aj, z) = 0 (j ∈ Nn−1)

and the sets J>(z1), J<(z1) and J=(z1). Let x1 be any solution to a subsystem J1 of system (4),
where

J1 =

{
J>(z1) ∪ J=(z1), if |J>(z1)| ≥ |J<(z1)|,
J<(z1) ∪ J=(z1), otherwise.

Set J = Nm \ J1 and i = 1.

Step 2. If J = ∅, then STOP; the sequence (x1, x2, . . . , xi) is the required committee solution
of system (4).

Step 3. Take any subset

L′ ⊆ J : |L′| = min{|J |, n− 1},
find a nontrivial solution zi+1 of system

(aj, z) = 0 (j ∈ L′).

Set L = J=(zi+1) and find solutions xi+1, xi+2 of subsystems with indices J>(zi+1) ∪ L and
J<(zi+1) ∪ L of system (4), respectively.

Step 4. Set J = J \ L, i = i + 2 and return to step 2.

Let us illustrate the algorithm in the case of n = 3. Since |aj| = 1, it is convenient to

Figure 2: Starting phase of the algorithm

depict the system as the set of points distributed on the unit sphere of the conjugate space (see
Figure 2).

In this example, each element xi of the required committee defines a hemisphere {a ∈ S2 :
(a, xi) > 0}.
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Figure 3: Step 1 is complete

Figure 3 corresponds to Step 1 of the first iteration of the algorithm where the sequence
(x1) has been chosen as the approximation of the required committee solution. The hemisphere
containing the points from J1 is filled with dark grey.

Figure 4 corresponds to completion of Step 4 of the first iteration, where the current approx-
imation is (x1, x2, x3). The grayed part of the sphere contains points related to the subsystem
of system (4), which has current approximation as a committee solution.

Figure 4: The first iteration is complete

Let us agree to call one iteration of the algorithm the sequence of steps 2–4 (the first iteration
includes also Step 1 executed by the algorithm once).

Theorem 11 ([13]).
1. The algorithm is correct and has at most

⌈
k

n− 1

⌉
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iterations.
2. Let the cardinality of the greatest feasible subsystem of system (4) have the upper bound of
k + (n− 1) + t for some natural t. Then the approximation ratio r of the algorithm satisfies the
condition

1 ≤ r ≤ 2d k
n−1

e+ 1

2d k−t
2t+n−1

e+ 1
≈ 1 +

2t

n− 1
.

Remark 4. [13] The algorithm finds the optimal solution of the MCLE problem in the class of
uniformly distributed inequalities systems [14].

Conclusion

In this paper, two special cases, the MCFS and the MCLE, of the Minimum Committee com-
binatorial optimization problem are considered. It is proved that both problems are NP -hard.
For the MCFS problem, an inapproximability threshold similar to the one of the SET COVER
problem is established. In particular, the existence of approximation algorithm for the MCFS
problem with ratio 1

4
log2(m − 1) implies P = NP, and if the ratio (1 − ε) ln(m − 1), is guar-

anteed for some ε > 0, this implies NP ⊂ TIME(nO(log log n)). In addition, an approximation
algorithm for the MCLE problem is discussed.
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