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Abstract

 

—The computational complexity of two important special cases of the minimal committee problem
(MC), viz., the problem on the minimal committee of finite sets (MCFS) and the problem on the minimal com-
mittee of a system of linear algebraic inequalities (MCLE), is studied. Both problems are shown to be 

 

NP

 

-hard.
Separately, some adjacent problems of integer optimization are shown to be intractable. The efficient approx-
imability threshold is estimated for the MCFS problem, the estimates being allied to the results known for the
set cover problem. The intractable and polynomially solvable subclasses of the MCLE problem are given. The
problem of the minimal affine separation committee (MASC) is considered in conclusion; the results obtained
earlier for the MCLE problem are shown to be valid for this problem as well.
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INTRODUCTION

In this work, we consider a problem of combinato-
rial optimization, viz., the problem of the minimal com-
mittee (MC). The MC problem is closely connected
with three areas of operations research: voting theory,
optimization, and pattern recognition. Voting theory
studies collective decision-making procedures based on
different logics of counting votes (democracies). A
committee is a mathematical model of voting on the
basis of simple majority rule.

The so-called perceptron algorithms, which go back
to Rozenblatt’s works, are rather important in pattern
recognition theory. It is not difficult to prove that a two-
layer perceptron with the additional condition of non-
negativity of the weights of the neuron at the second
layer and the appropriate threshold value is mathemat-
ically equivalent to a committee.

Finally, so-called improper problems are rather
common in optimization theory [1]. There are several
conditions under which an optimization problem is
improper. In terms of linear programming, for instance,
a problem is improper if the direct, dual, or both sys-
tems of restrictions are inconsistent.

Improper problems can be corrected by several
strategies. One of them suggests minimal perturbation
of the initial problem parameters so that the resulting
problem becomes solvable. Another strategy changes
the very notion of the solution to an improper problem.
Instead of one element of the reference space satisfying
all restrictions, a committee of “pseudosolutions” is
introduced, each of which satisfies a sufficiently large
part of constraints of the initial problem. Committee

solution theory [2] is one of mathematical formaliza-
tions of this approach.

By virtue of a number of objective reasons, when
solving all of the described above problems in the
framework of committee solution theory, it is desirable
to obtain committee solutions of the simplest structure.
This results in stating the minimal committee problem.
In this work, we study its computational complexity.

This paper consists of four sections.
In the first section, we state the minimal committee

problem for an abstract system of inclusions and the
adjacent problems of integer optimization. The second
section deals with a special case of the problem, in
which the inclusions are given by finite sets. In this
case, the problem is known to be 

 

NP

 

-hard. We show
that the adjacent problems of integer linear program-
ming possess a similar property. We also estimate the
approximation threshold for this problem, i.e., the max-
imum admissible approximation quality of the opti-
mum of the problem, for which an efficient approxi-
mate algorithm can be constructed.

In the third section, we consider another important
special case of the problem, viz., the minimal commit-
tee problem of an inconsistent system of linear alge-
braic inequalities. We show this problem to be 

 

NP

 

-hard
as well. Its adjacent problem of the minimal affine sep-
aration committee of majority possesses the similar
property. Further, we list the known polynomially solv-
able subclasses of the problem.

In the fourth and final section, we study the compu-
tational complexity of the problem of the minimal
affine separation committee for two finite sets. We
show that this problem is polynomially equivalent to
the MCLE problem and, hence, the results similar to
those obtained for the MCLE problem are valid for the
MASC problem as well.
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1. STATEMENT
OF THE MINIMAL COMMITTEE PROBLEM
Let a set 

 

X

 

 and a set 

 

D

 

1

 

, 

 

D

 

2

 

, …, 

 

D

 

m

 

 of its nonempty
subsets be given. We consider a system of abstract
inclusions

(1)

System (1) is not necessarily consistent; i.e., the
relation 

 

∩

 

D

 

j

 

 =  can be fulfilled. As usual (see, e.g.,
[2]), by a committee solution of 

 

q

 

 elements of system
(1) (or just the committee) we mean a finite sequence

 

Q

 

 = (

 

x

 

1

 

, 

 

x

 

2

 

, …, 

 

x

 

q

 

) satisfying the condition

for every 

 

j

 

 

 

∈

 

 

 

�

 

m

 

.
We state several problems of combinatorial optimi-

zation.

 

The Minimal Committee Problem (MC):
Let a set X and a set of its nonemp

 

ty subsets 

 

D

 

1

 

,

 

D

 

2

 

,  …, 

 

D

 

m

 

 be given. Find the committee solution to
system (1) with minimum possible 

 

q

 

 (or prove that
there are no committee solutions to this system).

Following [3], it is convenient to restate the MC
problem in terms of integer linear programming. Let 

 

J

 

1

 

,

 

J

 

2

 

, …, 

 

J

 

T

 

 be the index sets of all consistent subsystems
of system (1) that are maximal with respect to inclu-
sion. Obviously, a system is consistent if and only if

 

T

 

 = 1; otherwise, 1 < 

 

T

 

 < 2

 

m

 

. We define two 

 

m

 

 

 

×

 

 

 

T

 

 inci-
dence matrices 

 

A

 

 and 

 

B

 

 by the rule

 

a

 

ji

 

 = 1,

 

b

 

ji

 

 = 1 if

 

j

 

 

 

∈

 

 

 

J

 

i

 

;

 

a

 

ji

 

 = 0,

 

b

 

ji

 

 = –1, otherwise,

and consider the problems of integer linear program-
ming

(2)

and

(3)

Here, 

 

e

 

 and 

 

f

 

 are the vectors that consist of units and
belong to spaces 

 

E

 

T

 

 and 

 

E

 

m

 

, respectively. The following
theorem is known.

 

Theorem 1 ([4]).

 

 The MC problem and problems
(2) and (3) are simultaneously either solvable or
unsolvable. The sets of optimal solutions to problems
(2) and (3) are isomorphically embedded in the set of
solutions to the MC problem (with the committee solu-
tions consisting of minimal number of elements).

Along with the MC problem, we consider two spe-
cial cases of it.

(1) The MC problem with a finite set 

 

X

 

 (and all
its subsets 

 

D

 

j

 

) (we refer to it as the MCFS problem).

x D j, j �m∈ 1 2 … m, , ,{ }=( ).∈

0/

i : xi D j∈{ } q
2
--->

min e t,( ) Bt f≥ t, �+
T∈{ }

min s: 
At sf , t �+

T∈≥

e t,( ) 2s 1, s–≤ �∈⎩ ⎭
⎨ ⎬
⎧ ⎫

.

 

In Section 2, we show that Theorem 1 can be refined for
this problem. We also show that this special case of the
minimal committee problem is 

 

NP

 

-hard, which, in par-
ticular, results in intractability of the MC problem in the
general case. Moreover, we show that solving it approx-
imately with a given accuracy is an intractable problem
as well.

(2) The MC problem, in which the set 

 

X

 

 is a finite-
dimensional number space 

 

�

 

n

 

 and the subsets 

 

D

 

j

 

 are its
half-spaces. We refer to this problem as the problem of
the minimal committee of a system of linear inequali-
ties or the MCLE problem. In Section 3, we show it to
be 

 

NP

 

-hard as well and list some of its polynomially
solvable subclasses.

2. COMPUTATIONAL COMPLEXITY
OF THE MINIMAL COMMITTEE PROBLEM

In this section, we justify the intractability of the
MC problem. To do this, we show its special case—the
MCFS problem with all inclusions given by finite
sets—to be intractable. Then, we show that this prob-
lem and problems (2) and (3) corresponding to it are in
a sense “equally intractable.” In conclusion, we show
that, under reasonable assumptions, this problem can-
not be approximately solved with sufficient accuracy in
polynomial time and give the corresponding approx-
imability threshold.

 

2.1. The Intractability of the MCFS Problem

 

Thus, in this section, we mainly study the problem
of the minimal committee of finite sets (MCFS):

Let a set 

 

X

 

 = {

 

x

 

1

 

, 

 

x

 

2

 

, …, 

 

x

 

p

 

} and a set of its subsets

 

D

 

1

 

, 

 

D

 

2

 

, …, 

 

D

 

m

 

 be given. Find the committee of system
(1) with the minimal number of elements (or show that
there are no committee solutions to this system).

We choose a method for coding the problem condi-
tions and solution. Let the conditions of the particular
MCFS problem be given by an m × p matrix C filled
with 1 to –1, and

(4)

Without loss of generality, we can suppose that, for
an arbitrary committee Q = (y1, …, yq), there can be
found natural numbers k ≤ p,

and numbers

such that

c ji
1, if xi D j,∈

1, otherwise.–⎩
⎨
⎧

=

q1 q2 … qk: q1 q2 … qk+ + +, , , q,=

i1 i2 … ik: 1, , , i1 i2 … ik< < < p,≤ ≤

y1 y2 … y
q1 x

i1,= = = =
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… …

In what follows, the order of the elements in the
sequence Q is of no interest to us; therefore, we agree
to represent it in the form

which is characteristic of multisets. Here, the numbers

qj stand for the multiplicities of the elements .

Theorem 2. The MCFS problem is NP-hard.
Proof. It is sufficient to prove that the following

problem of property recognition is NP-complete.
The Committee Problem (COM):

Let subsets D1, D2, …, Dm of a finite set X and a num-
ber k ∈ � be given. Determine if there exists a commit-
tee of system (1) consisting of at most 2k – 1 elements.

To prove the theorem, we apply the standard tech-
nique and show that the hitting set problem, which is
proved to be NP-complete [5], can be polynomially
reduced to the stated (according to Karp) problem.

The Hitting Set Problem:
Let subsets C1, C2, …, Cn of a finite set S and a num-

ber k be given. Determine whether, for these subsets,
there exists a system M of representatives with no more
than k elements.

To prove the polynomial reducibility, it is sufficient,
for an arbitrary finite set S, the set of its subsets C1, …,
Cn, and the number k, to indicate—in the time polyno-
mial in the description length of the initial problem—
a set X and its subsets D1, …, Dm such that the sets C1,
…, Cn have a system of representatives with at most k
elements if and only if system (1) has a committee
whose cardinality does not exceed 2k – 1.

Let S = {s1, s2, …, st}, and C1, …, Cn ⊂ S and num-
ber k ∈ � be given. We choose s0 ∉ S and put X = S ∪
{s0} and m = n + 1. We put

(5)

This procedure can obviously be fulfilled in time
O(m + t). Indeed, without loss of generality, we can
suppose that the hitting set is given by n t-bit binary
numbers (it is also necessary to code the number k;
however, this is not important in our case). To code the
conditions of the committee problem according to (5),
it is sufficient to upend one bit to each of them and add
one (t + 1)-digit number with all digits set except for
this of the lowest order.

y
q1 1+

y
q1 2+

… y
q1 q2+

x
i2,= = = =

y
q1 … qk 1– 1+ + +

… yq x
ik.= = =

Q x
i1 q1,( ) x

i2 q2,( ) … x
ik qk,( ), , ,{ },=

x
i j

S j C j s0{ } j �n∈( ),∪=

Dn 1+ S.=⎩
⎨
⎧

Let M be the hitting system for the sets C1, …, Cn

and L(M) = { , …, } be the set of its elements, l ≤ k.
It is not difficult to see that the sequence

is the committee of system (1) by virtue of the construc-
tion and that it consists of

elements.
Inversely, let

be the committee of system (1). Without loss of gener-
ality, we can suppose that its cardinality is an odd num-
ber. Let

Since Dm = S and s0 ∉ S, it follows that r ≤ l – 1 and,
hence, l ≤ k'. Since K is the committee, there can be

found an element  ∈ Cj among , …,  for every
j ∈ �n. Hence, the sequence

is a hitting system for the sets C1, …, Cn. By virtue of
the construction, M has at most k' ≤ k elements.

Thus, the hitting set problem is shown to be polyno-
mially reducible to the committee problem. Hence, the
latter is NP-complete and the problem of searching the
minimal committee of finite sets (MCFS) is NP-hard.

Remark 1. The proof of this theorem was first pub-
lished in [6].

Remark 2. It is known [5] that the hitting set prob-
lem remains NP-complete even if we add the extra con-
dition

Using a line of reasoning similar to that in the proof
of the theorem, we can verify that the committee prob-
lem remains NP-complete if the condition |Dj | ≤ 3 is
met for all sets Dj except for, perhaps, one. Thus, the
MCFS problem remains NP-hard under the same con-
dition.

Remark 3. The minimal committee problem (MC)
of arbitrary system (1) with known maximum consis-
tent subsystems is polynomially equivalent to the
above-considered problem with finite sets Dj and is
therefore NP-hard as well.

Let us establish the correspondence between the
MCFS problem and problems of integer optimization
(2) and (3) introduced earlier.

Theorem 3. The MCFS problem and problems (2)
and (3) are polynomially equivalent.

s
i1 s

il

K s0 … s0, , s
i1 … s

il, , ,( )=

⎧ ⎨ ⎩

l – 1

2l 1– 2k 1–≤

K s0 … s0, , s
i1 … s

il, , ,( )=

⎧ ⎨ ⎩

r

r l+ 2k ' 1 2k 1.–≤–=

si j( ) s
i1 s

ik '

M si 1( ) si 2( ) … si n( ), , ,( )=

C j 2 j≤ �n.∈
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Proof. We show that MCFS and (2) are mutually
Turing reducible; the equivalence of (2) and (3) is obvi-
ous. Suppose that an m × p matrix C determines the
instance of MCFS problem according to (4) and that the
matrix B consists of its pairwise nondominated col-
umns. Without loss of generality, we assume the col-
umns of B to be the first T columns of the matrix C.
Problem (2) induced by the matrix B is the one sought.
Indeed, let the vector  = { , , …, } be the opti-
mal solution to problem (2). Then, by virtue of the con-
struction of the matrix B, the sequence

is the optimal solution to the MCFS problem (the min-
imal committee of system (1)).

Conversely, let the matrix B give the conditions of
particular problem (2). Consider the MCFS problem,
where C = B, and consider an arbitrary optimal solution
to the problem, viz., the sequence

We put it into correspondence with the vector  ∈ 
by the rule

By virtue of the construction, the vector  is the opti-
mal solution to problem (2).

The theorem is proved.

Corollary 1. Problems (2) and (3) are NP-hard.

2.2. The Effective Approximability Threshold 
for the MCFS Problem

In Theorem 2, we proved the MCFS problem to be
intractable. There arises the natural questions whether
it can be solved approximately in polynomial (in the
description length of its conditions) time and, if so,
what the accuracy is. As shown below, under the
assumption that P ≠ NP (or close to it), there is no poly-
nomial approximate algorithm with any constant accu-
racy for this problem. To prove it, we use the similar
results proved for the known set cover problem in [7, 8].

The Set Cover Problem:

Let a set S, |S | = m and a nonempty set of its subsets
C = {c1, c2, …, cl} be given. Find the subset C ' ⊆ C that
is minimal in cardinality and that covers S (for which
∪C ' = S is valid).

The following theorems are known.

t t 1 t 2 t T

Q xi t i,( ) t i 0> i �T∈,{ }=

Q x
i1 q1,( ) x

i2 q2,( ) … x
ik qk,( ), , ,{ }.=

t �+
T

tλ
q j, if λ i j,=

0, otherwise.⎩
⎨
⎧

=

t

Theorem 4 ([7]). If P ≠ NP holds, there is no
approximate algorithm with the approximation accu-

racy logm for the set cover problem.

Theorem 5 ([8]). For an arbitrary ε > 0, if there
exists an approximate algorithm with the approxima-
tion accuracy (1 – ε)lnm for the set cover problem, then

From this point on, we use the standard designation
lnm for the natural logarithm and logm for the loga-
rithm to base 2.

Theorem 5 is remarkable since it actually justifies
the optimality of the known greedy algorithm for the set
cover problem, whose approximation accuracy is lnm
[9]. In what follows, we prove the similar propositions
for the MCFS problem (this result was first published in
[10]).

Lemma. If there exists an approximate algorithm
with the approximation accuracy r for the MCFS prob-
lem, then there also exists a similar algorithm with the
same accuracy for the set cover problem.

Proof. 1. We reduce the instance the set cover prob-
lem to the appropriate instance of the MCFS problem.
Let the sets S = {s1, s2, …, sm} and C = {c1, c2, …, cl} ⊆
2S be fixed. It is sufficient to find, in time bounded from
above by a polynomial of m and l, an appropriate state-
ment of the particular MCFS problem and, then, prove
that, for a natural k, the subset C ' ⊆ C, |C | ≤ k is a cover
of S if and only if the MCFS problem has an admissible
committee solution consisting of 2k – 1 elements.

We consider the m × l incidence matrix A of the sets
S and C. As before, we put

We put it into correspondence with the (m + 1) × (l  + 1)
matrix A' obtained from A by bordering it with the row
and column of units (see the table). We put the element
in the lower right corner of the constructed matrix equal
to zero. Consider the MCFS problem corresponding to

1
4
---

NP TIME nO nloglog( )( ).⊆

a ji

1, if s j ci,∈
0, otherwise.⎩

⎨
⎧

=

Construction of the MCFS problem

x1 x2 … xl xl + 1

c1 c2 … cl S

D1 s1 1

D2 s2 1

A

Dm sm 1

Dm + 1 C 1 1 … 1 0

… …
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the matrix A. Let the set X equal {x1, x2, …, xl + 1} and
the subsets Dj be defined by the formulas

Let C ' = { , , …, } be a cover of the set S, i.e.,

for every j ∈ �m, there exists a number

which, in turn, implies  ∈ Dj by virtue of the con-
struction. Then, the sequence

is a committee of system (1) since every set Dj contains
at least k elements of Q.

On the other hand, consider an admissible commit-
tee solution Q of system (1) consisting of 2k – 1 ele-
ments:

According to the choice of the set Dm + 1, we have λ < k.

Consider the subsequence ( , …, ). By the com-
mittee definition, for every j ∈ �m, there exists a num-
ber

By construction of the set Dj , the inclusion sj ∈  is
valid for this number. Therefore, the set

is the sought cover of the set S.
2. We prove that, if there exists an approximate algo-

rithm for the MCFS problem with approximation accu-
racy r, then there also exists an approximate algorithm
with the same accuracy estimate for the set cover prob-
lem. Suppose the approximate algorithm � with the
approximation accuracy r is found for the MCFS prob-
lem.

Consider the particular set cover problem; let t be
the cardinality of the minimal cover (the optimum of
the problem). According to the rules described above,
we put it into correspondence with an appropriate
MCFS problem.

As proved above,
(1) the minimal committee of the MCFS problem

has 2t – 1 elements;
(2) every committee solution to the MCFS problem

that consists of 2k – 1 elements is in correspondence
with a cover whose cardinality does not exceed k and

D j xl 1+{ } xi: s j ci∈ i, �l∈{ } j �m∈( )∪=

Dm 1+ x1 x2 … xl, , ,{ }.=

ci1
ci2

cik

µ j( ) �k: s j ciµ j( )
,∈ ∈

x
iµ j( )

Q x
i1 x

i2 … x
ik xl 1+ … xl 1+, ,, , , ,( )=

⎧ ⎪ ⎨ ⎪ ⎩
k – 1

Q x
i1 x

i2 … x
i2k 1– λ– xl 1+ … xl 1+, ,, , , ,( ).=

⎧ ⎪ ⎨ ⎪ ⎩

λ

x
i1 x

ik

µ j( ) �k: xiµ j( )
D j.∈ ∈

ciµ j( )

C ' ciµ
: µ �k∈{ }=

that can be restored in polynomial time using the
known committee.

Suppose the committee solution found by the
approximate algorithm � has 2k – 1 elements (as men-
tioned above, the committee of 2k elements can be
transformed into a committee of 2k – 1 elements by
excluding an arbitrary element). According to the
assumption,

hence, we can estimate the accuracy of the correspond-
ing approximate algorithm for the set cover problem as

The following theorems immediately follow from the
lemma and Theorems 4 and 5.

Theorem 6. If the hypothesis P ≠ NP holds, there is
no approximate algorithm with the approximation

accuracy  for the MCFS problem.

Proof. We assume the opposite: there exists an
approximate algorithm � that finds an admissible solu-
tion to the MCFS problem with m inclusions with accu-

racy . Then, by the lemma, there exists an

approximate algorithm for the set cover problem that
constructs an admissible cover whose cardinality does

not exceed  times that of the optimal one

(if |S | = m – 1), which, by Theorem 4, implies the equal-
ity P = NP. This contradiction proves the theorem.

One can similarly prove the following theorem.

Theorem 7. If the condition

is met, then, for an arbitrary ε > 0, there is no approxi-
mate algorithm for solving the MCFS problem with the
approximation accuracy (1 – ε)ln(m – 1).

Note that the technique of reducing the cover prob-
lem to the minimal committee problem, which was
used in the proof of the lemma, can be applied when
solving the problem of the committee division of sets.
For instance, consider the following statement. Sup-
pose subsets A and B of the main set X and a class of
decision rules

are given. It is required to construct the committee deci-
sion rule (over the class �) that accurately separates the

1
2k 1–
2t 1–
--------------- r;≤ ≤

k
t
-- r 1 1

2t
-----–⎝ ⎠

⎛ ⎞≤ 1
2t
----- r 1 1

2t
-----–⎝ ⎠

⎛ ⎞≤ r
2t
-----+ + r.≤

1
4
--- m 1–( )log

1
4
--- m 1–( )log

1
4
--- m 1–( )log

NP TIME nO nloglog( )( )⊆/

� f x α,( ) α Λ∈{ } X 0 1,{ }{ }⊆=
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sets A and B. In other words, it is necessary to find a
sequence (α1, α2, …, αq) such that

The following proposition holds.
Proposition 1. Let parameters α0, α1, …, αk be fixed

so that

and for every a ∈ A there can be found a number i = i(a)
such that f(a, αi(a)) = 1. Then, the sequence

defines the committee decision rule, which accurately
separates the sets A and B.

Proof. Indeed, the resulting sequence consists of q =
2k – 1 elements. For an arbitrary point a ∈ A, by
hypothesis, we have f(a, α0) = 1, and a number i = i(a)

can be found such that f(a, αi(a)) = 1; hence, (a,

αi) + (k – 1)f(a, α0) ≥ k > . Similarly, by hypothesis,

for every b ∈ B and i ∈ �k, the relation f(b, αi) = 0 is

valid, which results in (b, αi) + (k – 1)f(b, α0) ≤

k – 1 < . Q.E.D.

3. THE MINIMAL COMMITTEE PROBLEM
OF A SYSTEM OF LINEAR INEQUALITIES

Let the set X coincide with the set �
n
 of vectors with

rational coefficients and the subsets Dj be the half-
spaces

Then, system (1) has the form

(6)

There is another important special case of the MC
problem, which is the minimal committee problem of a
system of linear inequalities.

The Minimal Committee Problem of a System of
Linear Inequalities (MCLE):

Let natural numbers m and n > 1 and vectors

f x αi,( )
i 1=

q

∑ q
2
---–

⎝ ⎠
⎜ ⎟
⎛ ⎞

sgn
1, x A,∈

1, x– B.∈⎩
⎨
⎧

=

f a α0,( ) 1 a A∈( ),=

f b αi,( ) 0 b B∈ i �k∈,( )=

α0 … α0, , α1 … αk, , ,( )

⎧ ⎪ ⎨ ⎪ ⎩

k – 1

f
i 1=

k

∑
q
2
---

f
i 1=

k

∑
q
2
---

D j x X a j x,( )∈ 0>{ } 0 a j X .∈≠=

a j x,( ) 0 j �m∈( ).>

a1 a2 … am �
n∈, , ,

be given. Find the committee solution (the committee)
of system (6) consisting of the minimum number of ele-
ments (or prove that there are no committee solutions of
this system).

The MCLE problem is interesting for at least two
reasons. On the one hand, as discussed in the next sec-
tion, its application to pattern recognition learning is
obvious. The approach to pattern recognition learning,
which is connected with minimization of class capacity
(VC-dimension) of linear (affine) committee decision
rules, results in the MCLE problem.

On the other hand, unlike the MCFS problem stud-
ied above, the MCLE problem cannot be studied using
the conventional approach based on reducing the prob-
lem to the equivalent problem of integer optimization
(2) and studying the latter’s properties. It is not difficult
to see that the reducibility of the MCLE problem to (2)
(or (3)) is not polynomial. Indeed, to pass to problem
(2), we need to find all maximal consistent subsystems
of system (6). However, the problem of searching for
all maximal consistent subsystems of a system of linear
inequalities is known to be intractable. We consider the
following problem of combinatorial optimization.

The Maximal Consistent Subsystems Problem
(Densest Hemisphere):

Let numbers n > 1 and m and vectors

be given. Find the maximal consistent subsystem of
system (6) with maximal cardinality.

The following theorem holds.
Theorem 8 ([11]). The densest hemisphere problem

is NP-hard.
Thus, the conventional scheme of studying the com-

putational complexity of the MCLE problem is not effi-
cient in the general case. Below, we show the MCLE
problem to be NP-hard and describe an approximate
polynomial algorithm for solving it on only the basis of
the geometric properties of the family of half-spaces in
the finite dimensional vector space. Note that the con-
ventional approach based on analyzing problems (2)–
(3) can still be applied when studying the following
problem of combinatorial optimization, which is adja-
cent to the MCLE problem.

The Optimal Committee Improvement Problem
(COMIMP):

Let there be given natural numbers n > 1, m, and q
and vectors

such that the sequence Q = (x1, x2, …, xq) is the commit-
tee of system (6). Find the committee Q' = (y1, y2, …,
yq') with minimum possible q' ≤ q, in which

a1 a2 … am �
n∈, , ,

a1 a2 … am x1 x2 … xq, , , , , , , �
n∈

yi x1 x2 … xq, , ,{ } i �q '∈( ).∈
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Indeed, we use a line of reasoning similar to that in
Section 1. We consider m × q incidence matrices A' and
B', whose elements obey the rule

 = 1,  = 1, if (aj , xi) > 0,

 = 0,  = –1, otherwise.

We obtain the matrices A and B by eliminating the pair-
wise dominated columns of the matrices A' and B'. Let
τ be the number of their columns. Consider the prob-
lems

(7)

and

(8)

which are similar to problems (2) and (3), respectively.
Taking into account the fact that the constructions in
hand can be carried out in the time polynomial in the
description length of the COMIMP problem, we obtain
the following proposition, which is proved similar to
Theorem 3.

Proposition 2, The COMIMP problem and prob-
lems (7) and (8) are polynomially equivalent.

3.1. The Computational Complexity 
of the MCLE Problem

In this subsection, we show that the MCLE problem
given above is intractable in the general case. We also
describe some of its special cases when the problem is
polynomially solvable.

Theorem 9. The MCLE problem is NP-hard.
The proof of this theorem follows from two auxil-

iary propositions with several extra combinatorial prob-
lems to be considered.

The Problem of the Committee of Three Elements of
a System of Linear Inequalities (3-COMLE):

Let natural numbers m and n > 1 and vectors

be given. Is there a committee solution of system (6)
that consists of three elements?

Proposition 3. The 3-COMLE problem is Turing
reducible to the MCLE problem.

Proof. Consider an arbitrary particular case of the 3-
COMLE problem, viz., the problem of searching for a
committee of three elements for fixed system (6). We
put it into correspondence with a particular MCLE
problem, viz., the minimal committee problem of the
same system of inequalities. We apply an arbitrary
algorithm of solving the MCLE problem. If there are no
committee solutions of the system, the answer to the
initial problem is also negative. Let Q = (x1, x2, …, xq)

a ji' b ji'

a ji' b ji'

min e t,( ) Bt f≥ t �+
τ∈,{ }

min s: 
At sf , t≥ �+

τ∈

e t,( ) 2s 1, s–≤ �∈⎩ ⎭
⎨ ⎬
⎧ ⎫

,

a1 a2 … am, , , �
n∈

be the minimal committee of system (6); if q > 3, then
the answer to the initial problem is obviously negative.
If q = 3, then Q is the required solution to the initial 3-
COMLE problem (in this case, the answer to it is posi-
tive). We consider the case q = 1, where Q = (x1), sepa-
rately (as mentioned above, the minimal committee
cannot consist of an even number of elements). We find
the vector z from the condition

Obviously, one can find such a vector in time polyno-
mial in the description length of the problem. The com-
mittee Q' = (x1, z, –z) is the required solution to
3-COMLE problem. The proposition is proved.

The 3-COMLE problem belongs to the NP class,
since it takes the time polynomial in the description
length of the problem to check whether a fixed
sequence Q = (x1, x2, x3) is the committee of system (6).

Consider the auxiliary combinatorial problem.
The Problem of Coloring a Graph with Three Col-

ors (3-COLORABILITY)
Let a finite graph G = (V, H), V = {v1, v2, …, vn}

be given. Determine whether it can be colored in three
colors or, in other words, if there exists the function
ϕ: V  {1, 2, 3} such that for an arbitrary u, v ∈ V
the condition ({u, v} ∈ E) ⇒ (ϕ(u) ≠ ϕ(v)) is met.

It is known [5] that the 3-COLORABILITY prob-
lem is NP-complete. In what follows, we show it to be
reduced polynomially (according to Karp) to the 3-
COMLE problem.

Proposition 4. The 3-COMLE problem is NP-com-
plete.

Proof. Let the graph G = (V, H) used to state the
3-COLORABILITY problem be given. Without loss of
generality, we assume that n > 0 and V = �n. We put the
graph G into correspondence with a system of linear
inequalities over �n as follows

(9)

This can be constructed in the time bounded from
above by a polynomial of n. It is not difficult to check
that system (9) is consistent if and only if its corre-
sponding graph G is the graph of isolated vertices. We
show that the graph is 3-colorable if and only if system
(9) has a committee solution consisting of three ele-
ments.

Let the partition V1 ∪ V2 ∪ V3 give the coloring of
the graph G in three colors. We prove that the sequence
Q = (x1, x2, x3), where

a j z,( ) 0 j �m∈( ).≠

xi x j+ 0 i j,{ } E∈( )>
       xi 0 i V∈( ).<⎩

⎨
⎧

xi
k 2, i Vk∈

1, i– Vk∉⎩
⎨
⎧

k �3∈( ),=
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is a committee solution of system (9). Let i ∈ V1 (the
cases of V2 and V3 can be considered similarly). The

sequence Q was chosen so that  < 0 and  < 0; thus,
Q is the committee solution of the subsystem

Now, consider an arbitrary edge {i, j} ∈ E. Without
loss of generality, we can assume that i ∈ V1 and j ∈ V2.
Hence, the choice of Q results in

Thus, we showed Q to be the committee solution of the
subsystem

and, hence, of system (9) as a whole.

On the other hand, let the sequence Q = (x1, x2, x3)
be an arbitrary committee solution of system (9). We
give the sets V1, V2, and V3 by the rule

(10)

Since Q is the committee of system (9), the equality
holds

V1 ∪ V2 ∪ V3 = V.

Without loss of generality, we can assume that subsets
(10) form a partition of the set V (i.e., are nonempty and
pairwise disjoint). Sets (10) define the required color-
ing of the graph G. Indeed, suppose the contrary, i.e., an
edge {i, j} ⊂ V1 exists (the cases for V2 and V3 can be
considered similarly). By virtue of the construction of
the set V1,

hence,

On the other hand, by the definition of a committee, at
least one of the inequalities

holds. The obtained contradiction proves that the
coloring is correct. The proposition and, hence, Theo-
rem 9 are proved.

Remark 4. It follows from the proof of the prop-
osition that the MCLE (3-COMLE) problem remains
NP-hard (NP-complete) if we restrict ourselves to con-
sidering systems of homogeneous inequalities with all
coefficients belonging to the set {–1, 0, 1}, each ine-
quality having at most three nonzero coefficients.

xi
2 xi

3

xi 0 i V∈( ).<

xi
1 x j

1+ 1 0 and xi
2 x j

2+> 1 0.>= =

xi x j 0 i j,{ } E∈( ),>+

Vk i V xi
p∈ 0 p �3\ k{ }∈( )<{ } k �3∈( ).=

xi
2 0, x j

2 0,< <

xi
3 0, x j

3 0,< <

xi
2 x j

2 0 and xi
3 x j

3 0.<+<+

xi
2 x j

2 0 or xi
3 x j

3 0.>+>+

Remark 5. The proposition holds if n can take arbi-
trarily large values. If, additionally, the value n is
bounded from above, then it may turn out that the
3-COMLE and MCLE problems are polynomially
solvable. For instance, it is known (see [3]) that there is
a polynomial algorithm for the MCLE problem when
n = 2.

In [12], we describe an approximate algorithm for
solving the MCLE problem, whose properties are given
in the following theorem.

Theorem 10 ([12]). Let m = 2k + n – 1 for a natural
k in system (6) and each subsystem of n inequalities be
consistent.

(1) The algorithm described above is correct and has
no more than

iterations, the complexity of each being equivalent to
the complexity of the problem of searching for a solu-
tion of the consistent subsystem of the initial system.

(2) Let the cardinality of the maximal consistent
subsystem of system (6) be no more than k + (n – 1) +
t for a natural t. Then, the approximation accuracy r of
the algorithm satisfies the relation

In the same study, we prove that the algorithm is
accurate in the class of uniformly distributed (accord-
ing to Gale) systems of inequalities, which implies the
polynomial solvability of the MCLE problem in this
particular case.

We show that several problems adjacent to the
MCLE problem are intractable.

The Problem of the Committee of a System of Affine
Inequalities (COMLE):

Let there be given natural numbers n > 1 and m, vec-
tors

and an odd number k. Is there a committee of system (6)
with no more than k elements?

Note that the COMLE problem is the MCLE prob-
lem restated as a problem of property recognition. The
following corollary holds.

Corollary 2. The COMLE problem is polynomially
solvable for k ≥ m or k ≤ 2 and NP-complete otherwise.

Proof. By Mazurov’s theorem [3], system (6) has a
committee solution whose cardinality is odd and does
not exceed M if and only if each of its subsystems of
two inequalities is consistent. This condition can be
checked, as well as the committee be constructed, in the
time bounded from above by a polynomial in m and n.

k
n 1–
-----------

1 r

2 k
n 1–
----------- 1+

2 k t–
2t n 1–+
----------------------- 1+

------------------------------------------≤ ≤ 1
2t

n 1–
-----------.+≈

a1 a2 … am �
n
,∈, , ,
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Checking whether a committee solution exists consist-
ing of at most two elements is obviously equivalent to
the problem of searching for a solution of system (6),
which is known to be polynomially solvable. The
intractability of the problem for k < m follows from the
NP-hardness of the MCLE problem.

Consider the problem of searching for solutions of
the system

(11)

Theorem 11. For k = 2s + 1 and |aj | < 1, the COMLE
problem and problem (11) are polynomially equivalent.

Proof. Since the hypothesis of the appropriate par-
ticular problems for COMLE and (11) are determined
by the vectors a1, a2, …, am and number k, one can,
without loss of generality, suppose that both problems
have the same description of initial data. Hence, to
prove the theorem, it is sufficient to show that both
problems have the positive answer for the same initial
data.

Consider a pair of particular problems of COMLE
and (11). Let the answer to the COMLE problem be
positive and a sequence (x1, x2, …, xq) be the committee
of system (6) for q ≤ k = 2s + 1. Without loss of gener-
ality, we assume that |xi | ≤ 1 for every j ∈ �q. By the
committee definition, the inequality

holds for all j ∈ �m. Moreover, the inequality (aj , xi) >
–1 holds for every i and j by assumption. Hence, the
sequence (y1, y2, …, yq, ξ1, …, ξm), where yi = xi, ξj ∈
{0, 1}q, and

is the solution of system (11).
On the other hand, let the sequence (y1, y2, …, yq,

ξ1, …, ξm) be a solution of system (11). Substituting it
into the system, we verify that the inequality

holds for every j. Hence, the sequence (y1, …, yq) is a
committee of system (6), i.e., a solution to the COMLE
problem. Thus, the sets of solutions of system (11) and
the COMLE problem are connected by the natural
bijection

which can be computed in the time polynomial in the
description of initial data. The theorem is proved.

a j yi,( ) ξi
j+ 0>

ξ1
j ξ2

j … ξ2s 1+
j+ + + s≤

ξi
j 0 1,{ }, yi

�
n∈ ∈⎩

⎪
⎨
⎪
⎧

i �2s 1+ j �m∈,∈( ).

i �q: a j xi,( )∈ 0>{ } s 1+≥

ξi
j 0, if a j xi,( ) 0>

1, otherwise⎩
⎨
⎧

=

yi: a j yi,( ) 0>{ } s 1+≥

y1 y2 … yq ξ1 … ξm, , , , , ,( ) y1 … yq, ,( ),

Corollary 3. The problem of searching for a solu-
tion of system (11) is polynomially solvable for 2s + 1 ≥
m or s = 0 and NP-complete otherwise.

Remark 6. Similarly to Remark 5, note that prob-
lem (11) is polynomially solvable for n = 2 and arbi-
trary s ∈ �+. Whether the problem is polynomially
solvable for fixed n ≥ 3 remains to be studied.

4. THE PROBLEM OF MINIMAL AFFINE 
SEPARATION COMMITTEE

In this section, we consider the problem of minimal
affine separation committee (MASC), which is adjacent
to the MCLE problem of the minimal committee of a
system of linear inequalities discussed above.

We fix sets A and B in �
n
. As usual [2], by an affine

separation committee for the sets A and B we mean a
finite sequence of functions ( f 1, f 2, …, f q) such that

For the sets with finite cardinality, the following exist-
ence criteria of the dividing committee are known.

Theorem 12 ([14]). An affine separation committee
for finite sets A, B ⊂ �

n
 exists if and only if A ∩ B = .

The minimal affine committee consists of at most
|A ∪ B | elements.

We put the system of inequalities

(12)

into correspondence with the problem of searching for
the affine separation committee. We denote the rank of
system (12) by r. The following sufficient existence
conditions of the affine separation committee directly
follow from the sufficient existence conditions of the
committee solution to the system of linear inequalities
[2, 6].

Proposition 5. Let every subsystem of system (12)
of rank k, 0 < k < r, have a committee solution consist-
ing of at most q elements. Then, there exists an affine
separation committee for the sets A and B with the num-
ber of elements bounded from above by

Proposition 6. Let every subsystem of system (12)
consisting of k + 1 inequalities, where 0 < k < r, be con-
sistent. Then, there exists an affine separation commit-
tee for the sets A and B consisting of at most

elements.
Proposition 7. Let, in addition to the hypothesis of

the previous proposition, a subsystem of system (12) of

f i x( ) βi x,( ) γ i i �q∈( ).+≡

0/

β a,( ) γ 0 a A∈( )>+

β b,( ) γ 0 b B∈( )<+⎩
⎨
⎧

2q m 1–( )/2
k

----------------------------- 1.+

2 m k–( )/2
k

----------------------------- 1+
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cardinality µ with a committee solution consisting of
2q – 1 elements can be found. Then, there exists an
affine committee dividing the sets A and B and consist-
ing of at most

elements.

In what follows, we assume that A, B ⊂ �
n
 are finite.

The Problem of the Minimal Affine Separation Com-
mittee (MASC):

Let a natural number n > 1 and sets A, B ⊂ �
n
,

where

be given. Find an affine separation committee of the
sets A and B with the minimal number of elements (or
prove that the sets cannot be divided by a linear com-
mittee).

The Problem of Affine Separation Committee of
Three Elements (3-ASC):

Let there be given a natural number n > 1 and sets A,
B ⊂ �

n
, where

Is there an affine separation committee for the sets A
and B that consists of three elements?

It is not difficult to prove the following proposition.
Here, as before, we assume that two problems are poly-
nomially equivalent if they are mutually Turing reduc-
ible to each other.

Proposition 8. (1) The MCLE and MASC problems
are polynomially equivalent. (2) The 3-COMLE and 3-
ASC problems are also polynomially equivalent.

Taking into account Proposition 4 and Theorem 9
proved above, we state the following corollary.

Corollary 4. (1) The MASC problem is NP-hard.
(2) The 3-ASC problem is NP-complete.

Remark 7. Similarly to Remark 4, note that the
MASC (3-ASC) problem remains NP-hard (NP-com-
plete) even under the condition A ∪ B ⊂ {–1, 0, 1}n, and
every point contains at most three nonzero coordinates.

It is not difficult to check that the approximate algo-
rithm mentioned in the previous section and applied to
search for the committee solution of system (12) is also
an approximate algorithm for the MASC problem. The
following theorem holds.

Theorem 13. Let n > 2, |A ∪ B | = 2k + n and every
subsystem of system (12) consisting of n + 1 inequali-
ties be consistent. The algorithm finds the affine sepa-
ration committee for the sets A and B in no more than

 iterations. If, moreover, the cardinality of the max-

imal consistent subsystem of system (12) does not

2q 1 m µ–
k

-------------+⎝ ⎠
⎛ ⎞ 1–

A a1 a2 … am1
, , ,{ }, B b1 b2 … bm2

, , ,{ },= =

A a1 a2 … am1
, , ,{ }, B b1 b2 … bm2

, , ,{ }.= =

k
n
---

exceed k + t + n for some natural number t, then the
approximation accuracy r of the algorithm satisfies the
relation

CONCLUSIONS

In this work, we studied the computational com-
plexity of two special cases of the minimal committee
problem—the MCFS and MCLE problems. Both prob-
lems are shown to be intractable. As a corollary, we
obtained some results on the computational complexity
of the problem of the minimal affine separation com-
mittee (MASC).
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