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Abstract—In this paper, we consider the issues of the existence of committee solutions
and their generalizations for inconsistent systems of relations. An approach to investigating
these issues, which is based on an analysis of the structure of the hypergraph of maximal
consistent subsystems, is proposed. New upper bounds for the number of elements of a
minimum committee for a system of linear inequalities are given. We show that the problem of
constructing a minimum committee is in the general case NP -hard and give conditions which
allow us to solve it either exactly or approximately with a prescribed accuracy in a polynomial
time. New estimates for the capacity of the class of committee decision rules are presented.

INTRODUCTION

An inconsistent system of constraints (equations or inequalities) is an object often arising at the
stage of modeling of applied problems in many areas of knowledge: physics, technology, economics,
etc. Several approaches to generalizing the notion of a solution to a system of constraints in the
case of its inconsistency are known. One of these approaches is Chebyshev’s approach, which is
associated with weakening of constraints of the system and, correspondingly, finding a “least” (in
the given metrics) perturbation of parameters of the initial problem allowing the system to be
solvable. Then, as an approximation of the solution to the initial system one takes the solution of
the obtained perturbed problem. Another approach (see, for example, [9–11, 22]) is connected with
consideration not one approximation of the solution, but a whole set each of whose elements is an
exact solution of a suitable sufficiently large subsystem of the initial system. The simplest example
of such “collective” solution is a majority committee, i.e., such a sequence that each constraint
is satisfied by more than a half of its elements. This paper contains a survey of both known and
recently obtained by the authors results concerning properties of committee solutions of inconsistent
systems of constraints as well as committee decision rules in pattern recognition. In those cases
where it is necessary, assertions are supplied with corresponding proofs and examples.

1. BASIC CONCEPTS AND NOTATIONS

Let an abstract set X and a collection of its subsets D1, . . . ,Dm be given. Let us consider a
system of inclusions

x ∈ Dj (j ∈ Nm = {1, 2, . . . ,m}). (1.1)
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S68 KHACHAI, MAZUROV, AND RYBIN

The system (1.1) is called inconsistent if
⋂m

j=1Dj = ∅. A number of assertions given below hold for
an arbitrary system (1.1); however, most of the results will be formulated for its particular case,
namely, for the system of inequalities

fj(x) > 0 (j ∈ Nm), (1.2)

where X is a real linear space, f1, . . . , fm ∈ F , and F is a given class of functions (linear, affine,
and so on) from X to R. The system

x ∈ Dj (j ∈ L) (1.3)

for arbitrary nonempty L ⊆ Nm will be called a subsystem with index L of the system (1.1) and
will be denoted by (1.1)L; denote by D(L) =

⋂
j∈LDj the set of its solutions.

Definition 1.1. A subsystem (1.1)L is called a maximal consistent subsystem (MCS) of the
system (1.1) if D(L) 6= ∅ and D(L ∪ {j}) = ∅ for any j ∈ Nm \ L.

It is seen that a system (1.1) such that not any Dj = ∅ is either consistent or has proper MCSs.
Let us pass to definitions of committee constructions.

Definition 1.2. A committee (a majority committee) of the system (1.1) is a finite sequence
Q = (x1, . . . , xq), xi ∈ X such that |{i : xi ∈ Dj}| > q/2 for any j ∈ Nm.

If Q satisfies this definition, then q is called the number of elements of the committee Q,
and the system (1.1) is said to be solvable by a committee of q elements. Below, we show that
when analyzing the committee solvability of the system (1.1), it suffices to consider only those
committees that are composed of solutions of its maximal consistent subsystems. A committee
is called a minimum committee if it has the minimal possible number of elements for the given
system.

Several generalizations of the notion of a committee are known. Let p ∈ (0, 1), z ∈ Rq be given,
and let the characteristic functions ϕj : X → {−1, 1} :

ϕj(x) =

{
1, x ∈ Dj ,

−1, x /∈ Dj
(1.4)

be defined.

Definition 1.3. A finite sequence Q = (x1, . . . , xq), xi ∈ X, is called a (z, p)-solution of the
system (1.1) if for every j ∈ Nm the following inequality holds:

q∑

i=1

ziϕj(xi) > (2p− 1)
q∑

i=1

|zi|; (1.5)

a (z, p)-solution of the system (1.1) is called:

(1) a z-solution of the system (1.1) if p = 1/2;

(2) a (z, p)-committee of the system (1.1) if z ∈ Zq
+;

(3) a p-committee if z = [1, . . . , 1].

It is seen that Definition 1.2 of a majority committee directly follows from the definition of a
p-committee for p = 1/2.
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Let us describe the set Q of all committees of the system (1.1) [10]. To this end, consider the
vector function ϕ(x) = [ϕ1(x), . . . , ϕm(x)]. The set ϕ(X) is clearly finite. Let ϕ(X) = {ϕ1, ϕ2,

. . . , ϕs}. From Definition 1.2 it follows that Q ∈ Q if and only if by a permutation of elements the
sequence Q can be represented in the form:

(y1,1, . . . , y1,z1

︸ ︷︷ ︸
z1

, . . . , ys,1, . . . , ys,zs
︸ ︷︷ ︸

zs

), (1.6)

where yi,1, . . . , yi,zi are such that ϕ(yi,l) = ϕi, and z1, . . . , zs are nonnegative integers satisfying the
system of inequalities

s∑

i=1

ziϕ
i > 0. (1.7)

A committee Q ∈ Q is a minimum committee if and only if the vector z = [z1, . . . , zs] used in its
representation (1.6) is optimal in the problem:

min{
s∑

i=1

zi |
s∑

i=1

ziϕ
i > 0, z ∈ Zs

+}. (1.8)

Define a partial ordering on the set P q = {−1, 1}q as follows: let a, b ∈ P q,

a ≤ b ⇔ |{i : ai = 1}| ≤ |{i : bi = 1}|.

Let functions f1, . . . , fm : P q → R be given which are strictly increasing in accordance with the
chosen ordering.

Definition 1.4. A collective solution of the system (1.1) is a sequence Q = (x1, . . . , xq), xi ∈ X,
such that for every j ∈ Nm the inequality fj(ϕj(x1), . . . , ϕj(xq)) > 0 holds. In a particular case,
when fj(a1, . . . , aq) = |{i : ai = 1}|−αjq for numbers αj ≥ 0, a collective solution of the system (1.1)
is called a generalized solution of this system.

2. EXISTENCE THEOREMS

In this section, we give theorems of existence of committees and constructions which generalize
them for various classes of systems of constraints. The proofs of most of them are constructive;
at the same time, we present various upper bounds for the number of elements in minimum
committees (collective solutions, p-committees, etc.) for the systems of inclusions (inequalities)
under consideration.

Theorem 2.1 ([11]). If there exists a collective solution (generalized solution, (z, p)-solution,
etc.) of the system (1.1), then there exists a corresponding solution composed of solutions of its
MCSs.

In the problem (1.8) of finding a minimum committee of the system (1.1), this theorem permits
one to reduce the dimension of the space by setting only those components of the vector z to be
nonzero for which the vectors ϕi are pairwise incomparable, i.e., they satisfy the condition

∀i1 6= i2 ∃ j ∈ Nm : ϕi1
j = 1, ϕi2

j = −1.

Definition 2.1. A system of representatives for the sets D1, . . . , Dm is a finite sequence
M = (x1, . . . , xm), xi ∈ X, such that xi ∈ Di. A system of representatives M is called a system of
distinct representatives if xi 6= xj for any i 6= j.
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Denote by L(M) = {xi | i ∈ Nm} the set of elements of M. |L(M)| is called the number of
members of the system of representatives M . It is obvious that the system (1.1) is consistent if and
only if there is a system of representatives M of the sets D1, . . . ,Dm containing only one member.
A more general assertion holds.

Theorem 2.2 ([10]). If for any j ∈ Nm there is a system of representatives Mj for the sets
D1 ∩Dj , . . . ,Dm ∩Dj consisting of at most r members (r > 1), then the system (1.1) is solvable
by a p-committee for p = 1/r. In particular, for r = 2 the system (1.1) is solvable by a committee
of 2m elements.

Proof. Let M1, . . . ,Mm be the systems of representatives appearing in the assumption of the
theorem. Set L(Mj) = {x1

j , . . . , x
rj

j }, rj ≤ r. Let us verify that the sequence

Q = (x1
1, . . . , x

1
1︸ ︷︷ ︸

r−r1+1

, x2
1, . . . , x

r1
1 , . . . , x

1
m, . . . , x

1
m︸ ︷︷ ︸

r−rm+1

, x2
m, . . . , x

rm
m )

is a p-committee of the system (1.1) for p = 1/r. Note that by construction of Q for every j ∈ Nm

the equality ϕj(xk
j ) = 1 holds for arbitrary k ∈ Nrj . Moreover, for every i ∈ Nm \ {j} there is a

number k = k(i, j) such that ϕj(x
k(i,j)
i ) = 1. Denote by y1, . . . , yrm the elements of Q. By the

definition of a p-committee, it suffices to verify that for every j ∈ Nm the inequality

rm∑

i=1

ϕj(yi) > (2p− 1)rm = m(2 − r)

holds. Indeed, from the above remark it follows that

rm∑

i=1

ϕj(yi) ≥ r +m− 1 − (m− 1)(r − 1) = m(2 − r) + 2(r − 1) > m(2 − r),

which completes the proof of the first assertion of the theorem. The second assertion is checked
analogously.

Theorem 2.3 ([10]). If any k sets of the system (1.1) intersect and k/m > p, then the
system (1.1) is solvable by a p-committee.

Similarly to the preceding theorem, this one is proved by direct verification.

It is easy to show that the assumptions of Theorems 2.2 and 2.3 are not necessary for the
existence of a p-committee. Indeed, let us consider, for example, a system of the form (1.1) with
the sets D1 = {1, 2, 3}, D2 = {1, 4}, D3 = {2, 4}, and D4 = {3, 4}. It is seen that Q = (1, 2, 3, 4, 4)
is its committee (a p-committee for p = (3/5) − ε and arbitrary ε > 0); however, for the system,
the assumptions of Theorem 2.2 for r = 2 and of Theorem 2.3 for k = 3 do not hold.

Let us formulate a simple necessary condition for the existence of a p-committee.

Theorem 2.4 ([11]). Let K = (x1, . . . , xq) be a p-committee of the system (1.1), then it
contains an element xi such that |{j : xi ∈ Dj}| > pm.

This result was also obtained independently by K. S. Kobylkin [23, 24].
Proof. Suppose the contrary, let |{j : xi ∈ Dj}| ≤ pm for every i ∈ Nq. As usual, to

each xi we put into correspondence a vector ϕi ∈ {−1, 1}m such that ϕi
j =

{
1, xi ∈ Dj ,

−1, xi /∈ Dj .

Since K is a p-committee, it follows that
∑q

i=1 ϕ
i
j > (2p − 1)q for any j ∈ Nm. Therefore,
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∑m
j=1

∑q
i=1 ϕ

i
j > m(2p − 1)q. On the other hand, by assumption,

∑m
j=1 ϕ

i
j ≤ (2p − 1)m for every

i ∈ Nq; hence,
∑q

i=1

∑m
j=1 ϕ

i
j ≤ q(2p− 1)m. Consequently, the contrary assumption does not hold,

which proves the theorem.

This theorem immediately implies the presence of an MCS of cardinality greater than pm in a
system solvable by a p-committee, and an MCS of cardinality at least k

2k − 1m in a system solvable
by a committee which consists of 2k − 1 elements.

Theorem 2.5. Let Q = (x1, x2, . . . , x2k) be a committee of the system (1.1) for k ∈ N. Then
the sequence Q′ = (x1, x2, . . . , x2k−1) is also a committee of this system.

Further, let X be a real linear space, l1, . . . , lm ∈ X∗ be linear functionals on X, and let
b1, . . . , bm ∈ R. Let us consider the issue of the existence of a committee of the system of the
inequalities

lj(x) > bj (j ∈ Nm). (2.1)

By virtue of the finiteness of the system (2.1) [17], the problem of investigating committee solvability
of the system (2.1) is equivalent to an analogous problem for a suitable system of inequalities in
Rn, where n is the rank of the system of the functionals l1, . . . , lm.

Indeed, let g = {x ∈ X | lj(x) = 0 (j ∈ Nm)}. Then X = Xn ⊕ g, where Xn is the real n-
dimensional linear space. Let e1, . . . , en be a basis ofXn, let aji = lj(ei) and x = x1e

1+. . .+xne
n+z,

where z ∈ g. Then lj(x) =
∑n

i=1 xilj(ei) =
∑n

i=1 ajixi. Define x = [x1, . . . , xn]T ∈ Rn, aj =
[aj1, . . . , ajn] ∈ Rn, and (aj , x) =

∑m
i=1 ajixi. Consider the system

(aj , x) > bj (j ∈ Nm) (2.2)

in Rn. Let us formulate the above reasoning in the form of a lemma.

Lemma 2.1. A necessary and sufficient condition for the existence of a collective solution
(a generalized solution, (z, p)-solution, . . . ) of the system (2.1) is the existence of an analogous
solution of the system (2.2).

The lemma allows us to consider throughout the paper the problem of finding committee
constructions for a system of linear inequalities in Rn.

Let us formulate conditions of existence of committee solutions to the system of linear inequal-
ities (2.2). Let us adopt to denote the rank of its subsystem (2.2)L by r(L) and the rank of the
whole system by r.

Theorem 2.6. The system (2.2) is solvable by a majority committee if and only if every of
its subsystem of two inequalities is consistent.

The necessity of the condition of the theorem is obvious. The sufficiency will follow from
Theorem 2.8 presented below; although historically, it was proved directly (see, for example, [10]).

Lemma 2.2. (1) Let ∅ 6= L ⊂ Nm, and let the condition r(L ∪ {j}) > r(L) hold for every
j ∈ Nm \ L. Then the system {

(aj , x) = 0 (j ∈ L),
(aj , x) 6= 0 (j ∈ Nm \ L)

(2.3)

is consistent.
(2) If, besides this, ∅ 6= L′ ⊆ L is the index of a consistent subsystem of the system (2.2), then
there exists such a covering L1, L2 of the set Nm \ L that the subsystems (2.2)L′∪L1

and (2.2)L′∪L2

are also consistent.
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Proof. (1) Suppose the contrary, let the system (2.3) be inconsistent. Consider its maximal
consistent subsystem {

(aj , x) = 0 (j ∈ L),
(aj , x) 6= 0 (j ∈ I),

(2.4)

where I ⊂ Nm \ L and an arbitrary number j0 ∈ Nm \ (L ∪ I). By assumption r(L ∪ {j0}) > r(L);
hence, {

(aj , x) = 0 (j ∈ L),
(aj0 , x) = 1

is consistent. Denote by xj0 its arbitrary solution, and by xI a solution of the system (2.4). Then
the vector εxj0 + xI is a solution of the system

{
(aj , x) = 0 (j ∈ L),
(aj , x) 6= 0 (j ∈ I ∪ {j0})

for sufficiently small ε > 0, which contradicts the choice of I.
(2) Denote by xL a solution of the system (2.3), and by xL′

a solution of the subsystem (2.2)L′ .

Take a real parameter α > 0 such that the inequality

max{(aj , x
L′

+ αxL), (aj , x
L′ − αxL)} > bj

holds for any j ∈ Nm \ L. The sets L1 = {j ∈ Nm \ L | (aj , x
L′

+ αxL) > bj} and L2 = {j ∈
Nm \ L | (aj , x

L′ − αxL) > bj} are desired.

Lemma 2.3. Let L0, L1, . . . , Ls be proper subsets of Nm satisfying the properties:
(1) L0 ∪ L1 ∪ . . . ∪ Ls = Nm,

(2) r(Li ∪ {j}) > r(Li) for any i ∈ Ns and j 6∈ Li,

(3) the subsystem (2.2)L0
is consistent,

(4) for every i the subsystem (2.2)Li
is solvable by a committee of at most q elements.

Then the system (2.2) has a committee with at most 2qs+ 1 elements.

Proof. Denote by x0 an arbitrary solution of the subsystem (2.2)L0
, which is consistent by

assumption. Let us fix an arbitrary number i ∈ Ns, and denote by zi a solution of the system

{
(aj, x) = 0 (j ∈ Li),
(aj, x) 6= 0 (j ∈ Nm \ Li),

which is consistent by Lemma 2.2, and denote by (yi,1, yi,2, . . . , yi,qi) a committee of the subsys-
tem (2.2)Li

. By assumption, qi ≤ q. Applying the second assertion of Lemma 2.2 qi times, we verify

that there is a number αi > 0 such that the sequence Qi = (yi,1 ±αiz
i, yi,2 ±αiz

i, . . ., yi,qi ±αiz
i),

which is a committee of the subsystem (2.2)Li
, satisfies the condition

max{(aj , y
i,k + αiz

i), (aj , y
i,k − αiz

i)} > bj (j ∈ Nm \ Li, k ∈ Nqi
). (2.5)

Indeed, let us consider the inequality with an arbitrary number j ∈ Nm. By assumption, there is
a number i = i(j) ∈ {0, 1, . . . , s} such that j ∈ Li. If i = 0, then (aj, x

0) > bj; hence, by (2.5) the
number of elements of Q satisfying the jth inequality is at least

∑s
t=1 qt + 1 > 1

2 (2
∑s

t=1 +1). If
i > 0, then the jth inequality is satisfied by more than a half of elements of Qi; consequently, the
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total number of elements of the sequence Q satisfying this inequality is at least qi+1+
∑s

t=1,t 6=i qt >
1
2(2

∑s
t=1 +1). Therefore, the sequence

Q = (x0, y1,1 ± α1z
1, y1,2 ± α1z

1, . . . , y1,q1 ± α1z
1, . . . , ys,1 ± αsz

s, ys,2 ± αsz
s, . . . , ys,qs ± αsz

s)

is a committee of the system (2.2) with the number of elements being 2
∑s

i=1 qi + 1 ≤ 2qs+ 1.

Denote by dxe and bxc the result of rounding a real number x to the nearest integer from
“above” and “below”, respectively.

Theorem 2.7. Let every subsystem of the system (2.2) of rank k, 0 < k < r, be solvable by
a committee of at most q elements. Then the system (2.2) is also solvable by a committee with the
number of elements being bounded from above by

2q
⌈b(m− 1)/2c

k

⌉
+ 1.

Proof. Let (2.2)L be the maximal, with respect to inclusion, subsystem of the system (2.2) with
the rank k. By assumption, it is solvable by a committee of at most q elements. By Theorem 2.5
we can consider q to be odd, let q = 2t− 1. Consequently, there exists a nonempty subset L′ ⊆ L

such that the subsystem (2.2)L′ is consistent; in addition, by the remark to Theorem 2.4, |L′| ≥
d t

2t−1e|L| > |L|/2. By Lemma 2.2 there is a consistent subsystem (2.2)L0
such that L0 ⊇ L′ and

|L0| ≥ |L′| + d(m − |L|)/2e > m/2. Let us consider the partition L′
1 ∪ L′

2 ∪ . . . ∪ L′
s = Nm \ L0

such that r(L′
i) = k for all i ∈ Ns−1 and r(L′

s) ≤ k. By construction, s ≤ d(m − |L0|)/ke. Let us
associate a subsystem (2.2)Li

with each i ∈ Ns, where L′
i ⊆ Li and r(Li ∪ {j}) > r(Li) for every

j 6∈ Li. By Lemma 2.3 the system (2.2) is solvable by a committee of at most

2qs+ 1 ≤ 2q
⌈b(m− 1)/2c

k

⌉
+ 1

elements.

Theorem 2.8. Let every subsystem of the system (2.2) consisting of k + 1 (0 < k < r)
inequalities be consistent; then the system is solvable by a majority committee with the number of
elements being bounded from above by

2
⌈b(m− k)/2c

k

⌉
+ 1.

Proof. Let the subsystem (2.2)L be the maximal, with respect to inclusion, subsystem of the
system (2.2) with the rank k. By assumption, it is consistent; hence, by Lemma 2.2 there exists a
consistent subsystem (2.2)L0

such that |L0| ≥ |L| + d(m− |L|)/2e = d(m+ |L|)/2e ≥ d(m+ k)/2e.
To complete the proof, we apply considerations of the proof of the preceding theorem for q = 1.

Remark 2.1. From the following well-known fact [9]:

An arbitrary system (2.2) of consistent linear inequalities has consistent subsystems
(2.2)L1

and (2.2)L2
such that L1 ∪ L2 = Nm,

it follows that in Theorems 2.6–2.8, for the system of linear inequalities (2.2) with aj 6= 0 there
exists a committee with not only a given number of elements but also with any greater odd number.
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Note that in the case of a system of nonlinear inequalities this last assertion, generally speaking,
does not hold.

Example 2.1. Let us consider a system of polynomial inequalities defined on the plane.
In Fig. 1, we shaded the sets of solutions of its five maximal consistent subsystems denoted by
I, II, . . . , and V, respectively: I= {1, 2, 3, 4, 5, 6}, II= {1, 2, 3, 7, 8, 9}, III= {1, 4, 5, 7, 8, 10},
IV= {2, 4, 6, 7, 9, 10}, and V= {3, 5, 6, 8, 9, 10}; and the minimum committee of the system consists
of solutions of these subsystems taken by one. The system has no committee of 7 elements.





(
x
2

)2 +
(

y
17

)2
< 1 (1)

(x − 9)2 + (y + 10)2 < 169 (2)
(x + 9)2 + (y + 10)2 < 169 (3)
(x + 10)2 + (y + 4)2 > 225 (4)
(x − 10)2 + (y + 4)2 > 225 (5)
−0.03x4 + 1.44x2 − 14 − y > 0 (6)
(x − 3)2 + (y − 3)2 < 36 (7)
(x + 3)2 + (y − 3)2 < 36 (8)(

x
7

)2 +
(

y+1
3

)2
< 1 (9)

0.01x4 − 0.56x2 + 6 − y < 0 (10)

Fig. 1. An example of system of inequalities which is solvable by a committee of 5 elements and
not solvable by a committee of 7 elements.

Remark 2.2. Theorem 2.8 in some sense generalizes the well-known Helly theorem to the
case of inconsistent systems of linear inequalities. Indeed, for k ≥ r, by the Helly theorem, the
system (2.2) is consistent thus having a committee of one element; for 1 ≤ k < r the system might
be inconsistent in the ordinary sense, but by Theorem 2.8 it has a committee with the number of
elements satisfying the upper bound specified in the theorem; thus, the number of elements in a
minimum committee of a system of linear inequalities can serve as a measure of its “consistency”
(or inconsistency).

Let B be a Banach space and f1, . . . , fm be real functionals on it. Consider the system of
inequalities

fj(x) > 0 (j ∈ Nm). (2.6)

Theorem 2.9 ([10]). Let functionals f1, . . . , fm be Frechet differentiable at the point x0 = 0,
so that
(1) fj(0) = 0 (j ∈ Nm),
(2) the rank of system of functionals f ′j(0) equals r > 0,

(3) for 0 < k < r every subsystem of k + 1 inequality of the system

f ′j(0)x > 0 (j ∈ Nm)

is consistent.
Then the system (2.6) is solvable by a committee with the number of elements being bounded from
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above by

2
⌈b(m− k)/2c

k

⌉
+ 1.

To prove this theorem, it suffices to linearize fj at zero and consider the system of linear
inequalities f ′j(0)x > 0 (j ∈ Nm).

3. HYPERGRAPH OF MAXIMAL CONSISTENT SUBSYSTEMS

The problem of studying the committee solvability of the system

x ∈ Dj (j ∈ Nm), (3.1)

in which not all sets Dj are empty, is closely connected with the problem of studying the structure
of the set of its maximal consistent subsystems (MCS). It is convenient to formulate the latter
problem in terms of the graph theory.

Let us define the hypergraph of MCSs of the system (3.1) and consider some of its properties
connected with the committee solvability of the studied inclusion system.

Definition 3.1. A hypergraph of MCSs of the system (3.1) is the hypergraph G = (V,E),
where V = {J1, . . . , Jp} is the set of indices of MCSs of the system (3.1), and {Ji1 , . . . , Jis} ∈ E if
and only if

⋃s
k=1 Jik

= Nm.

Let us find necessary and sufficient conditions for an arbitrary finite hypergraph g to be the
hypergraph of MCSs of some system (3.1) up to isomorphism. As usual [8], we will say that
hypergraphs g and G are isomorphic if there exists a one-to-one mapping ϕ : V g → V such
that u = {v1, . . . , vs} ∈ Eg if and only if {ϕ(v1), . . . , ϕ(vs)} ∈ E. In the sequel, we will denote
{ϕ(v1), . . . , ϕ(vs)} by ϕ(u).

Theorem 3.1. Let g = (V g, Eg), where V g = {v1, . . . , vp} is a finite graph without multiple
edges. The hypergraph g is isomorphic to the hypergraph G of MCSs of a system (3.1) for suitable
numbers m, n and sets D1, . . . ,Dm ⊂ Rn if and only if Eg satisfies the conditions

if p > 1, then Eg is loopless, (3.2)

(u ∈ Eg, u ⊂ w) ⇒ w ∈ Eg. (3.3)

Proof. Necessity. Let the graph g without multiple edges be isomorphic to the hypergraph G
of MCS of a system (3.1), and let ϕ : V g→ V be an isomorphism of g onto G. Let us show that
conditions (3.2) and (3.3) are fulfilled. Indeed, if p > 1, then the system (3.1) is inconsistent; hence,
the set E of edges of the hypergraph G is loopless by the definition of the hypergraph of MCS;
consequently, Eg is also loopless, since g and G are isomorphic. Now, let u = {v1, . . . , vk} ∈ Eg

and w = {v1, . . . , vk, . . . , vs}, then ϕ(u) = {Ji1 , . . . , Jik
}, ϕ(w) = {Ji1 , . . . , Jik

, . . . , Jis}, where
Ji1 , . . . , Jis are some indices of MCSs of the system (3.1). Since ϕ is an isomorphism, then ϕ(u) ∈
E; hence,

⋃k
t=1 Jit = Nm, consequently,

⋃s
t=1 Jit = Nm, and ϕ(w) ∈ E by the definition of the

hypergraph of MCSs; whence w = ϕ−1(ϕ(w)) ∈ Eg, since ϕ−1 is also an isomorphism.
Sufficiency. Let us show that if conditions (3.2) and (3.3) are fulfilled, then there exist a number

m and sets D1, . . . ,Dm ∈ N such that the hypergraph G of MCSs of the system (3.1) is isomorphic
to g. If p = 1, then two cases are possible: g = ({v1}, {{v1}}) and g = ({v1},∅). In the first case
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we set m = 1 and D1 = {1}, in the second case we set m = 2 and D1 = {1}, D2 = ∅. It is seen
that in both cases the hypergraph of the MCS of the constructed system (3.1) is isomorphic to g.

For p > 1 we put
W = 2V g \ (Eg ∪ {∅}).

Because the set W is finite, we will assume that W = {w1, . . . , wm}, where m ≥ 0. Note that since
g is a loopless hypergraph it follows that W contains all one-element subsets of V g. Let us put

Jk = {i | vk /∈ wi}

for all k ∈ Np. The constructed sets satisfy the following conditions:

∅ 6= Jk ⊂ Nm, (3.4)

Jk1 \ Jk2 6= ∅ (k1 6= k2), (3.5)
⋃

k∈L

Jk = Nm ⇔ {vk | k ∈ L} ∈ Eg (∅ 6= L ⊂ Np). (3.6)

Conditions (3.4) and (3.5) guarantee that the sets J1, . . . , Jp are indices of MCSs of some inclusion
system. Indeed, for every j ∈ Nm let us put

Dj = {i ∈ Np | j ∈ Ji}. (3.7)

It is seen that the sets J1, J2, . . . , Jp and only them are indices of MCSs of the system (3.1) with
the sets Dj defined by relation (3.7). Indeed, by construction for every Ji and j ∈ Ji the inclusion
i ∈ Dj holds; hence,

⋂
j∈Ji

Dj 6= ∅. On the other hand, let
⋂

j∈LDj 6= ∅, where L 6= ∅. By
construction there is i ∈ Np such that i ∈ Dj for every j ∈ L; hence, L ⊆ Ji.

Defining a one-to-one mapping ϕ : V g→ V in the natural way: ϕ(vk) = Jk, by condition (3.6)
we conclude that ϕ is an isomorphism of the hypergraph g onto G.

The theorem is proved.

In the sequel, we will consider hypergraphs up to isomorphism identifying isomorphic g and G.
In other words, a hypergraph without multiple edges satisfying conditions (3.2) and (3.3) will be
called the hypergraph of MCSs. The proved theorem implies that the class of hypergraphs of MCSs
of the systems of the form (3.6) is wide enough. Let us select in it a subclass of hypergraphs of
MCSs of systems (3.1) solvable by a committee of q elements for some given q ∈ N. Put k ∈ Nq−1.

Definition 3.2. A finite sequence of vertices S = (vi1 , . . . , viq+1
) of the hypergraph g is called

a (q, k)-simplex in the hypergraph g = (V g, Eg) if for every L ⊂ Nq+1 such that |L| = k + 1 the
inclusion {vij

: j ∈ L} ∈ Eg holds.

We choose the notation (q, k)-simplex from geometrical reasoning. It is seen, for example, that
the vertex-elements of a (2, 1)-simplex form a triangle in the hypergraph g (3-cycle). The following
simple statement includes a criterion which connects the committee solvabilitiy of the system (3.1)
with the existence of a (q, k)-simplex in its hypergraph of MCSs for appropriate numbers q, k ∈ N.

Theorem 3.2 ([15]). The system (3.1) is solvable by a committee of q elements if and only if
in the hypergraph G of its MCSs there is a subhypergraph whose vertices form a (q−1, b(q−1)/2c)-
simplex.

Proof. Let Q = (x1, . . . , xq) be a committee of the system (3.1), and let G be the hypergraph
of its MCS. Put J ′

i = {j |xi ∈ Dj} for every i ∈ Nq. Let J1, . . . , Jq be not necessarily distinct indices
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of MCSs of the system (3.1) such that J ′
i ⊆ Ji (i ∈ Nq). Let us show that (J1, . . . , Jq) is a desired

(q − 1, b(q − 1)/2c)-simplex.
Indeed, consider arbitrary L ⊂ Nq such that |L| = b(q−1)/2c+1 = b(q+1)/2c. Without loss of

generality, we set L = {i1, . . . , ib(q+1)/2c}. Let us fix arbitrary j ∈ Nm. If j /∈


⋃

⌊
q−1
2

⌋

k=1 Jik


, then,

by construction, j /∈


⋃

⌊
q−1
2

⌋

k=1 J ′
ik


. Since Q is a committee of the system (3.1), it follows that

j ∈


⋂q

k=

⌊
q+1
2

⌋ J ′
ik


 ⊆


⋂q

k=

⌊
q+1
2

⌋ Jik


; whence j ∈

⋃b(q+1)/2c
l=1 Jil

. Consequently,
⋃b(q+1)/2c

l=1 Jil
=

Nm and (J1, . . . , Jq) is a (q − 1, b(q − 1)/2c)-simplex in the hypergraph G.
Sufficiency. Let us suppose that in the hypergraphG there are (not necessarily distinct) vertices

J1, . . . , Jq which form a (q − 1, b(q − 1)/2c)-simplex. By the definition of an MCS, D(Ji) 6= ∅. Let
xi ∈ D(Ji) (i ∈ Nq). Let us consider arbitrary j ∈ Nm. Without loss of generality, we will suppose

that {i |xi ∈ Dj} = {1, . . . , q′}. Then j /∈
(⋃q

l=q′+1 Jl

)
. Consequently, q− q′ < b(q+ 1)/2c; whence

q′ ≥ bq/2c + 1. Therefore, according to the definition, Q = (x1, . . . , xq) is a committee of the
system (3.1).

The theorem is proved.

We proved a theorem that the problem of finding a committee with a given number of elements
is equivalent to the problem of finding a subhypergraph of a special form in the hypergraph of
MCSs. In the next section, we give a classification of committees in terms of the structure of the
corresponding subhypergraphs of the hypergraph G.

Let us describe properties of the hypergraph of MCSs of a system of linear homogeneous
inequalities defined on the plane. Let the following system be given:

(aj , x) > 0 (j ∈ Nm), (3.8)

where aj , x ∈ R2 and among the vectors aj there are no zero or oppositely directed vectors. Let
{I1, . . . , Ip} be a set of indices of MCSs of the system (3.8). As mentioned above, p is odd and
equals the number of elements of the minimum committee that solves the system; we thus set
p = 2t+1. Let G3 = (V2, E2) be the hypergraph of MCSs of the system (3.8). Below, we show that
it has in some sense an extremal property with respect to the number of elements of the minimum
committee of the system: the set of its edges is maximal with respect to inclusion among the sets
of the edges of hypergraphs of order p of MCSs of arbitrary systems (3.1) which are solvable by a
committee of p elements.

Consider a Boolean m× p matrix whose elements are defined as follows:

mji =

{
1 if j ∈ Ii,

0 otherwise.

Let us enumerate inequalities and indices of MCSs of the system (3.8) so as to reduce the matrix
M to a more convenient form for analysis. To this end, we associate with each inequality a unit
vector cj in the direction of the line {x | (aj, x) = 0} by taking one of the two possible such that if
moving along the specified line in its direction, the plane {x | (aj , x) > 0} remains from the right.
Denote indices of MCSs of the system (3.6) by I1, . . . , Ip in the increasing order of the azimuth angle
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corresponding to the direction vector of the left boundary of the solution cone of the relevant MCS.
Let us enumerate inequalities of the system (3.8) by natural numbers 1, . . . ,m in the increasing
order of the azimuth angle corresponding to the direction vectors cj which are associated with them
assuming that the number 1 is assigned to direction vector of the left boundary of the solution cone
of the MCS with the index I1 (see Fig. 2).

Fig. 2. An example of enumeration of inequalities and maximal consistent subsystems

For the chosen enumeration of inequalities and indices of MCSs of the system (3.8), the matrix
M takes the following form:

M =




1 0 . . . . . . 0 1 . . . . . . 1
...

...
...

...
...

...
...

...
...

1 0 . . . . . . 0 1 . . . . . . 1
1 1 0 . . . . . . 0 1 . . . 1
...

...
...

...
...

...
...

...
...

1 1 0 . . . . . . 0 1 . . . 1
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 . . . . . . 0 1 1 . . . . . . 1
...

...
...

...
...

...
...

...
...

0 . . . . . . 0 1 1 . . . . . . 1




.

It is seen that each inequality appears precisely in t + 1 indices of MCSs; besides this, since the
matrix M contains precisely p = 2t + 1 pairwise distinct rows, it follows that inequalities of the
system (3.8) are partitioned into p equivalence classes. Namely, the j1th and j2th inequalities appear
in the same indices of MCSs if and only if they are representatives of the same class (respectively
when the j1th and j2th rows of the matrix B coincide). Let us enumerate the equivalence classes
of inequalities of the system (3.8) by numbers 1, . . . , p in the natural order.

Thus, G2 = (V2, E2) is the hypergraph of MCSs of the system (3.6) on the plane, V2 =
{I1, . . . , Ip}. To describe the set E2, it suffices to consider one inequality from every equivalence
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class by introducing, instead of the matrix M , a square boolean p× p matrix

M ′ =

t+ 1


1 0 . . . . . . 0 1 . . . 1 1

1 1 0
. . . . . . 0

. . . . . . 1
...

. . . . . . . . . . . . . . . . . . . . .
...

1
. . . . . . 1 0

. . . . . . 0 1

1
. . . . . . . . . 1 0

. . . . . . 0

0 1
. . . . . . . . . 1

. . . . . .
...

...
. . . . . . . . . . . . . . . . . . 0

...

0
. . . . . . 1

. . . . . . . . . 1 0
0 0 . . . 0 1 1 . . . 1 1




t+ 1.

It is easy to see that, for example, the vertex I1 appears in two-elements edges {I1, It+1} and
{I1, It+2}. The following simple proposition establishes a condition on the numbers of vertices
belonging to a set u ⊂ V2, which is necessary and sufficient for u ∈ E2. Everywhere below, we
assume that the notation u = {Ii1 , . . . , Iis} implies that the inequalities i1 < i2 < . . . < is hold.

Proposition 3.1 ([16]). A subset of vertices {Ii1 , . . . , Iis} of the hypergraph G2 is its edge if
and only if for every k ∈ Ns the condition

(i((k (mod s))+1) − ik) (mod p) ≤ t+ 1

is fulfilled.

Proof. Sufficiency is obvious due to the peculiarity of the structure of the matrix M ′.

Necessity. Let {Ii1 , . . . , Iis} ∈ E2. Then
⋃s

k=1 Iik = Nm by the definition of G2. Let us show,
for example, that i2 − i1 ≤ t + 1. Note that the MCS with the index Ik includes all inequalities
representing classes with numbers k, (k (mod p)) + 1, . . . , (k+(t− 1)) (mod p)+ 1 and only them.
Consider an arbitrary inequality with number τ from the class ((i1 + t) (mod p))+1. It is seen that
τ /∈ Ii1 ; hence, there is k ∈ {2, 3, . . . , s} such that τ ∈ Iik . Consequently, all the inequalities from
the specified class belong to the MCS with the index Iik , i.e., either ik = ((i1 + t) (mod p)) + 1 or
there is c ∈ {0, 1, . . . , t− 1} such that ((ik + c) (mod p)) + 1 = ((i1 + t) (mod p)) + 1. In the first
case, ik − 1 = (ik − 1) (mod p) = (i1 + t) (mod p), whence, ik − i1 = (ik − i1) (mod p) = (t+ 1)
(mod p) = t + 1. In the second case, ik − i1 = (ik − i1) (mod p) = (t − c) (mod p) = t − c ≤ t.

Since i2 − i1 ≤ ik − i1, it follows that i2 − i1 ≤ t+ 1.
The proposition is proved.

This proposition implies, in particular, that if the number p is large enough, then E2 contains
edges, which contain no two-element edges. For example, the hypergraph of MCSs of the system
depicted in Fig. 2 contains the edge {I1, I4, I7} which contains no two-element edges.

Let us also recall some properties of the graph of MCSs of a system of linear homogeneous
inequalities such that the set of vertices of this graph coincides with the set of vertices of the
hypergraph of MCSs of the system, and the set of edges is induced by the subset of two-element
edges of the specified hypergraph.

The notion of the graph of MCSs was first introduced in [13] for systems of strict homogeneous
linear inequalities. Properties of this graph were studied in details in works [4, 5]; in [4] some of
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these properties were generalized to the case of a more general inclusion system. A consequence
of these results is the construction of an algorithm faster than the Fourier–Chernikov convolution
algorithm [17], for finding all MCSs of a system of strict homogeneous linear inequalities.

Let J1, . . . , Jp be the indices of all MCSs of the system (3.1). In what follows, we will employ
some notions of the graph theory [8]. Let G = (V,E) be an arbitrary graph. The degree of a
vertex v is the number of edges incident to v, i.e., the number |{e ∈ E : v ∈ e}|. An alternating
sequence

v1, {v1, v2}, v2, {v2, v3}, . . . , {vl−1, vl}, vl, (3.9)

such that vj ∈ V, {vj , vj+1} ∈ E, is called a (v1, vl)-path. A path is often specified by the sequence
of vertices appearing in it. A path is called a chain if all its edges are distinct and a simple chain
if all its vertices, may be except for boundary vertices, are distinct. A path (3.9) is called cyclic if
v1 = vl. A cyclic chain is called a cycle, and a simple chain is called a simple cycle. The number of
edges of a path is called its length. A graph G is called connected if for any two vertices vi 6= vj in it
there exists a (vi, vj)-path. Below, we will consider chains and cycles in a hypergraph understanding
them, nevertheless, as the notions introduced here.

Let X be a topological space in which ordered pairs of sets (A1, A
′
j), . . . , (Am, A

′
m) are specified.

Define the sets D1, . . . ,Dm ⊂ X × {0, 1} as follows:

Dj =
{[
x

1

]
| x ∈ Aj

}
∪
{[
x

0

] ∣∣∣ x ∈ A′
j

}

and consider the inclusion system

y =
[
x

x′

]
∈ Dj (j ∈ Nm). (3.10)

It is seen that an arbitrary subsystem (3.10)L with ∅ 6= L ⊆ Nm is consistent (i.e., D(L) =
⋂

j∈LDj 6= ∅) if and only if
(⋂

j∈LAj

)
∪
(⋂

j∈LA
′
j

)
6= ∅.

Theorem 3.3 ([5]). Let the sets Aj , A
′
j be open in X, Aj ∩A′

j = ∅, and Fj = X \ (Aj ∪A′
j)

be nowhere dense in X for all j ∈ Nm. If the set X \F, where F =
⋃

i 6=j Fi ∩Fj , is connected, then
the graph of MCSs of the system (3.10) is also connected.

A corollary of the presented theorem is a theorem by V. Yu. Novokshenov on the connectivity
of the graph of MCSs of the system

(aj , x) > 0 (j ∈ Nm), (3.11)

in which aj , x ∈ Rn, ‖aj‖ = 1, and aj ± ai 6= 0 for any i, j ∈ Nm. Indeed, let us associate
with the system (3.11) an appropriate system (3.10) [4] by setting Aj = {x | (aj , x) > 0} and
A′

j = {x | (aj , x) < 0}. For arbitrary ∅ 6= L ⊆ Nm, denote by C(L) the solution cone for the
subsystem with the index L of the system (3.11). It is seen that C(L) 6= ∅ if and only if D(L) 6= ∅;
therefore, the sets (and graphs) of MCSs of systems (3.10) and (3.11) coincide. Since Fj are
hyperplanes in Rn, it follows that Fj are nowhere dense in X, and the set F defined in the theorem
is such thatX\F is connected. Consequently, by Theorem 3.3 the graph of MCSs of the constructed
system (3.10) is connected; hence, the graph of MCSs of the system (3.11) is also connected.

Theorem 3.4 ([4]). Let k ∈ Nn−1 and every subsystem of (k + 1) inequality of the sys-
tem (3.11) be consistent. Then the degree of any vertex of its graph of MCSs is at least k + 1.
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Theorems 3.3–3.4 allow one to find MCSs of the system (3.11) by constructing paths in the
graph of its MCSs. For example, it is known [13] that if J1 ⊂ Nm is the index of an MCS of an
inconsistent system (3.11), then there is an MCS of the same system with the index J2 such that
J2 ⊃ (J \ J1).

Theorem 3.5 ([4]). A graph is isomorphic to the graph of MCSs of an appropriate sys-
tem (3.11) on the plane if and only if it is a cycle of odd length q, where 1 ≤ q ≤ m.

In Rn an analogous result is formulated as follows.

Theorem 3.6 ([4]). Any edge of the graph of MCSs of the system (3.11) belongs to a simple
cycle of length at most m.

Theorem 3.7 ([4]). The graph of MCSs of the system (3.11) contains a simple cycle of odd
length at most m.

This last theorem allows us to take a different look at the issue of the existence of a committee
for a system of linear homogeneous inequalities. From the definition of a committee it follows that
if indices J1, J2, . . . , J2k−1 form a cycle in the graph of MCSs of an arbitrary inclusion system (3.1)
(in particular, of the system (3.11)), then this system is solvable by a committee composed of
solutions of corresponding MCSs taken by one from each system. Thus, the presence of a cycle of
odd length is sufficient for the existence of a committee. The theorem under discussion states that
if a system of linear homogeneous inequalities possesses a committee, then it possesses a committee
associated with a simple cycle of odd length.

Below, we show that in the case of arbitrary inclusion systems the presence of a cycle of odd
length in the graph of MCSs of the system (3.1) is not necessary for its solvability by a committee
(for example, the system considered in the remark after Theorem 2.3 is solvable by a committee
of 5 elements, whereas its graph of MCSs is acyclic); this leads to the problem of classification
of minimum committees with the same number of elements according to the subgraph generated
in the graph of MCS by indices of MCSs whose solutions constitute them. Below, we solve this
problem for committees of 3 and 5 elements.

In addition to the mentioned properties, in work [4] a number of interesting properties of the
graph of MCSs of the system (3.11): colorability, 2-connectivity, etc. is studied.

4. MINIMUM COMMITTEE

In this section, we describe properties of a committee with the minimal number of members,
which is called a minimum committee, of a not necessarily consistent inclusion system

x ∈ Dj (j ∈ Nm), (4.1)

where Dj are some sets in Rn.

On the set Q of committees of the system (4.1) one can define different criteria for selection
of an optimal element, which implement various approaches to generalization of the notion of a
solution

(1) the criterion of minimum distance between members; it relates to the problem of finding a
committee Q = (x1, . . . , xq) ∈ Q minimizing the value

g(‖x1 − x2‖, . . . , ‖xq−1 − xq‖),

where g is a convex function;
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(2) the criterion of maximum probability of events: “the ith member of the committee satisfies
the jth constraint” (i ∈ Nq, j ∈ Nm); it relates to the problem of finding Q = (x1, . . . ,

xq) ∈ Q maximizing a function p : Q → [0, 1] of the form

p(Q) = min
j∈Nm

|{i : xi ∈ Dj}|
q

.

(3) the criterion of optimization of an average profit; it relates to the problem of finding Q =
(x1, . . . , xq) ∈ Q maximizing the value

1
q

q∑

i=1

(c, xi)

for some c ∈ Rn, and others.

The criterion of minimality of the number of elements is one of the most often used optimality
criteria on the set of committees of the system (4.1). However, because of its combinatorial
character, the problem of finding a minimum committee is one of the most difficult in the theory
of committees.

In discrete optimization, there is a notion of NP -complete and NP -hard problems (see, for
example, [6]). Examples of such problems include the well-known traveling salesman problem,
integer programming problems, and the knapsack problem. All these problems are characterized by
the following: first, there is no known algorithm for solving them whose computational complexity is
estimated from above by a polynomial of the length of the writing the conditions of these problems;
second, as is known, if there is such an algorithm for one of these problems, then all problems of
the NP class are also solvable by algorithms with a polynomial estimate of the complexity. Besides
that, an NP -complete problem is characterized by the fact that they belong to the NP class, which
is a class with a polynomial check of an obtained solution. It is clear that the class P of all problems
solvable by polynomial algorithms is a subset of NP. There is a hypothesis that P 6= NP, within
whose framework NP -complete problems are most hard in the class NP .

Below, we show that the problem of finding a minimum committee of the system (4.1), in which
all set Dj are finite, is NP -hard.

Theorem 4.1. Let D1,D2, . . . ,Dm be finite sets. The problem of finding a minimum com-
mittee of the system (4.1) is NP -hard.

Proof. It suffices to prove the NP -completeness of the following problem of property recogni-
tion. The problem COMMITTEE: given subsets D1,D2, . . . ,Dm of a finite set X and a number
k ∈ N , determine is there a committee of the system (4.1) with the number of elements at most
2k − 1.

We will employ a standard method of proof and show that the problem SET OF REPRE-
SENTATIVES, whose NP -completeness is proved [6], is polynomially reduced to the formulated
problem. The problem SET OF REPRESENTATIVES: given subset C1, C2, . . . , Cn of a finite set
S and a number k, determine is there a system of representatives M for the given subsets with the
number of elements at most k.

To prove the polynomial reducibility, it suffices, for an arbitrary finite set S, a collection of its
subsets C1, . . . , Cn, and a number k, in a polynomial time of the length of writing of the initial
problem to find a set X and its subsets D1, . . . ,Dm such that the sets C1, . . . , Cn have a system
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of representatives with the number of elements at most k if and only if the system (4.1) has a
committee with the number of elements at most 2k − 1.

Thus, let S = {s1, s2, . . . , st} and let C1, . . . , Cn ⊂ S and a number k ∈ N be given. Select
s0 /∈ S and put X = S ∪ {s0}, m = n+ 1. Set

{
Dj = Cj ∪ {s0} (j ∈ Nn),
Dn+1 = S.

(4.2)

Clearly, these constructions can be made in a time of order O(m+ t).
Let M be a system of representatives for the sets C1 . . . , Cn and let L(M) = {si1 , . . . , sil} be

the set of its elements, l ≤ k. It is easy to see that the sequence

K =


s0, . . . , s0︸ ︷︷ ︸

l−1

, si1 , . . . , sil




is a committee of the system (4.1) of 2l − 1 ≤ 2k − 1 elements, by construction.

Conversely, let K =


s0, . . . , s0︸ ︷︷ ︸

r

, si1 , . . . , sil


 be a committee of the system (4.1) and r + l =

2k′ − 1 ≤ ≤ 2k − 1. Since Dm = S and s0 6∈ S, it follows that r ≤ l − 1; hence, l ≥ k′. Since K
is a committee, among its elements si1 , . . . , sik′ there is si(j) ∈ Cj for any j ∈ Nn; therefore, the
sequence

M =
(
si(1), si(2), . . . , si(n)

)

is a system of representatives for the sets C1, . . . , Cn. By construction, the number of elements of
M does not exceed k′ ≤ k.

Thus, we showed the polynomial reducibility of the problem SET OF REPRESENTATIVES to
the problem COMMITTEE. Consequently, this last problem is NP -complete and the problem of
finding a minimum committee is NP -hard.

The theorem is proved.

Note that the problem of finding a minimum committee of an arbitrary system of the form (4.1)
for known MCS is polynomial equivalent to the previous problem with finite sets Dj; consequently,
it is also NP -hard.

The above reasoning indicates that the minimum committee problem is difficult to solve;
therefore, we arrive at an actual problem of constructing different a priori estimates for the number
of elements in the minimum committee for some classes of systems of inclusions or inequalities.
When finding an estimate for a given inclusion (inequality) system, it is convenient to compare
the hypergraph of its MCSs with the hypergraph of MCSs of another system for which such an
estimate is known. Let a minimum committee of the system

(aj , x) > 0 (j ∈ Nm) (4.3)

on R2 consists of p = 2t + 1 elements. Denote by G2 = (V2, E2) its hypergraph of MCSs. The
assertions from the preceding section imply that its order also equals p; let V2 = {I1, . . . , Ip}.

Theorem 4.2 ([16]). Let ψ be a homomorphism of the hypergraph G2 of MCSs of the system
of linear homogeneous inequalities (4.3) on the plane into the hypergraph G = (V,E) of MCSs of
the inclusion system (4.1), and let there exist {Ik1 , . . . , Iks} ⊂ V2 such that {Ik1 , . . . , Iks} /∈ E2 and
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{ψ(Ik1), ψ(Ik2), . . . , ψ(Iks)} ∈ E. Then, the number of elements of a minimum committee which
solves the system (4.1) is less than p.

Proof. Let us use the following statement, which is easy to check. Let J1, . . . , J2s+1 be a chain
in the hypergraph G, i.e., E contains edges {J1, J2}, . . . , {Js−1, Js}. Then, the system (4.1) is
solvable by a committee composed of solutions of MCS-vertices of the chain taken by one if and
only if {J1, J3, . . . , J2s+1} ∈ E.

Let {Ik1 , . . . , Iks} ⊂ V2 be such that {Ik1 , . . . , Iks} /∈ E2 and {ψ(Ik1), . . . , ψ(Iks)} ∈ E. By
Proposition 3.1, there is j ∈ Ns such that

(k((j (mod s))+1) − kj) (mod p) > t+ 1.

Since p = 2t + 1, it follows that such j is unique. Without loss of generality, one can assume that
1 = k1 < k2 < . . . < ks = k and (1 − k) (mod p) > t+ 1, whence k ≤ t.

Let us consider the vertices I1, It+2, I2, . . . , It+k, Ik of the hypergraph G2. It is easy to see that
they form in it a simple chain (E2 contains edges {I1, It+2}, {It+2, I2}, . . . , {It+k, Ik}); consequently,
ψ(I1), ψ(It+2), ψ(I2), . . . , ψ(It+k), ψ(Ik) also form a chain in the hypergraph G, since ψ is a homo-
morphism. Since

{ψ(I1), ψ(Ik2), . . . , ψ(Ik)} ⊆ {ψ(I1), ψ(I2), . . . , ψ(Ik)}

and the first set belongs to E, it follows that {ψ(I1), ψ(I2), . . . , ψ(Ik)} ∈ E; consequently, by the
above proposition the system (4.1) is solvable by the committee composed of solutions of MCSs
with indices

ψ(I1), ψ(It+2), ψ(I2), . . . , ψ(It+k), ψ(Ik)

taken by one from each. The number of elements of this committee is 2k− 1 ≤ 2t− 1 < 2t+1 = p.

The theorem is proved.

Remark. In the proof of the theorem we obtained an algorithm for estimating the number of
elements of a minimum committee of the system (4.1). If G2 is homomorphically embedded in
G, then a minimum committee of the system (4.1) contains at most p elements. If in addition
the homomorphic image of G2 is “more connected” than G2, i.e., there is {Ii1 , . . . , Iis} ⊂ V2, such
that {Ii1 , . . . , Iis} /∈ E2, {ψ(Ii1), . . . , ψ(Iis)} ∈ E, and i(((k (mod s))+1) − ik) (mod p) > t+ 1, then
the number of elements in a minimum committee of the system (4.1) does not exceed 2((ik −
i((k (mod s))+1)) (mod p)) + 1 < p.

Let us apply these considerations to sharpen the estimate of the number of elements in a
minimum committee for a system of nonhomogeneous linear inequalities. Consider the inconsistent
system of inequalities

(aj , x) > bj (j ∈ Nm) (4.4)

such that x ∈ Rn and every subsystem of two inequalities is consistent. By Theorem 2.6 the
system (4.4) is solvable by a majority committee. It is required to estimate from above the number
of elements of its minimum committee. Theorem 2.6 provides such an estimate in the general case:
the number of elements of a minimum committee is at most 2m − 1. However, in most practical
problems one succeeds to construct a committee with the number of elements being considerably
less. Indeed, since the data in the specified system (4.4) is given, as a rule, approximately, we can
assume that among the vectors aj there are no zero or oppositely directed vectors; as a consequence,
the problem of finding committee of the system (4.4) can be reduced to an analogous problem for
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the system
(aj , x) > 0 (j ∈ Nm). (4.5)

Below, by the class of all systems of linear inequalities we mean the class of systems of the form (4.4),
for which the system (4.5) is solvable by a committee. By Theorem 2.8 the number of elements
in a minimum committee of the system (4.5) does not exceed m; moreover, this estimate is sharp
in the class of arbitrary systems of linear inequalities. Theorem 4.2 allows us to obtain a more
sharp, than m, estimate for the number of elements in a minimum committee of a system of linear
inequalities using a slightly different approach.

Let us consider a linear operator Φ : Rn → R2 such that among the vectors Φ(a1), . . . ,Φ(am)
there are no zero or oppositely directed. In this case, the system

(Φ(aj), y) > 0 (j ∈ Nm) (4.6)

is committee solvable; hence, such is the system

(Φ(aj), y) > bj (j ∈ Nm). (4.7)

IfQ′ = (y1, . . . , yq) is a committee of the system (4.7), thenQ = (Φ∗(y1), . . . ,Φ∗(yq)) is a committee
of the system (4.4).

Let {I1, . . . , Ip} and {J1, . . . , Jr} be sets of MCSs, and let G(4.6) and G(4.7) be the hypergraphs
of MCSs of the systems (4.6) and (4.7), respectively. By the definition of the hypergraph of MCSs,
V G(4.6) = {I1, . . . , Ip}. Define

W = 2V G(4.6) \ (EG(4.6) ∪ {∅, {I1}, . . . , {Ip}}).

By virtue of Proposition 3.1, for any element w = {Ii1 , . . . , Iis} ∈ W, there is k ∈ Ns such that
(i((k (mod s))+1) − ik) (mod p) > t + 1, where p = 2t + 1. Define the function ∆ : W → Z by
∆(w) = (ik − i((k (mod s))+1)) (mod p), and define the set

W ′ =

{
w = {Ii1 , . . . , Iis} ∈W | ∀k ∈ Ns ∃Jjk

: Jjk
⊇ Iik ,

s⋃

k=1

Jjk
= Nm

}

and the number

δ(4.4) =

{
min{∆(w) |w ∈W ′} if W ′ 6= ∅,

t otherwise.

Theorem 4.3 ([16]). The number of elements in a minimum committee of the system (4.4)
is at most 2δ(4.4) + 1.

In the theorem, we justify an estimate which sharpens an earlier estimate for the number of
elements of a minimum committee in the class of systems of linear inequalities and which depends
on the vectors a1, . . . , am, b and the operator Φ. Namely, in the proof of the theorem for the
system (4.7), we find a minimum committee among the committees constructed from solutions of
MCSs, whose indices include the indices of MCSs of the system (4.6), forming a chain in G(4.6).

One can show that the obtained estimate is sharp in the class of the systems (4.4) for which
the system (4.7) has no other MCSs, except for those all of whose indices include some indices of
MCSs of the system (4.6).
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Fig. 3. An example of a system of nonhomogeneous inequalities

The system of inequalities of the form (4.7) depicted in Fig. 2 has an MCS with the index J3,

which contains, as a proper subset, the index I3 of MCS of the system (4.6) corresponding to it.
Therefore, by Theorem 4.3 the minimum committee of the depicted system has at most 7 elements.
It is seen that the minimum committee of the depicted system contains precisely 7 elements (it
consists of solutions of MCSs with indices J2, . . . , J5, J7, J8, J9), whereas the minimum committee
of the system (4.6) contains 9 elements.

On classification of minimum committees.

In the preceding section, we established the connection between the existence of a committee
with a given number of elements q for the inclusion system (4.1) and the existence of a specific
subhypergraph in the hypergraph of MCSs of the system, namely, such a subhypergraph whose
vertices form a (q − 1, b(q − 1)/2c)-simplex. It is clear that for q = 3 such a subhypergraph
is uniquely defined; however, as q grows, the number of pairwise nonisomorphic subhypergraphs
satisfying this property grows fast. It is easy to see that properties of a committee, as a generalized
solution of the system (4.1), depend on the subhypergraph corresponding to it. By this argument,
it is reasonable to enumerate minimum committees with a given number of elements, using the
notion of isomorphism of hypergraphs.

Definition 4.1 ([15]). A sequence (J1, . . . , Jq) of indices of MCSs of the system (4.1) is called
a q-committee generating set (q-CGS) if there exists a minimum committee Q = (x1, . . . , xq) of the
system (4.1) such that xi ∈ D(Ji) =

⋂
j∈Ji

Dj for every i ∈ Nq.

From the proof of Theorem 3.2 it follows that if the number of elements in a minimum committee
solving the system (4.1) equals q, then the notions of a q-CGS and a (q − 1, b(q − 1)/2c)-simplex
coincide. We further consider only those committees of the system (4.1) which consists of solutions
of its MCSs. In addition, we will assume that two committees Q1 and Q2 are equivalent if their
corresponding members are solutions of the same MCSs. According to this assumption, to classify
minimum committees of q elements, it suffices to enumerate all pairwise nonisomorphic q-CGSs.

Let K = (J1, . . . , Jq) be a q-CGS of the system (4.1) and let L(K) = {Ji1 , . . . , Jir} be the set
of indices in K, where r ≤ q.
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Definition 4.2 ([15]). A hypergraph (graph) of q-committee generating setK is the hypergraph
G(K) (subgraph G(K)) generated by the set L(K) of vertices in the hypergraph (graph) of MCSs
of the system (4.1).

Let us consider an inconsistent inclusion system

x ∈ D′
j (j ∈ Nm′) (4.8)

in which D′
j ∈ Rn as in the system (4.1). Let K ′ = (J ′

1, . . . , J
′
q) be a q-CGS of the system (4.8).

Definition 4.3. We say that q-CGSs K and K ′ are isomorphic if the hypergraphs G(K) and
G′(K ′) are isomorphic.

By this definition, the problem of enumerating q-CGSs is equivalent to the problem of enumer-
ating pairwise nonisomorphic hypergraphs G(K). Since the hypergraph of an arbitrary 3-CGS is a
cycle of length 3 and, as a consequence, all 3-CGSs are pairwise isomorphic, we will solve the posed
problem in the simplest nontrivial case when q = 5. Denote by S the set of all systems of arbitrary
inclusions of the form (4.1), and by S an arbitrary element of S, i.e., a specified system (4.1).
Denote by K(S) the set of all 5-CGSs possessed by the system S, and put K(S) =

⋃
S∈S K(S). For

further considerations, let us take into account the following obvious proposition.

Proposition 4.1. Let G1 and G2 be hypergraphs of MCSs with the following property:

(u ⊆ V Gi, |u| = 3) ⇒ u ∈ EGi (i = 1, 2), (4.9)

and let g1, g2 be graphs such that V gi = V Gi and Egi coincides with the subset of two-element
edges of the set EGi. Then, the hypergraphs G1 and G2 are isomorphic if and only if the graphs g1

and g2 are isomorphic.

Since the hypergraph of an arbitrary 5-CGS satisfies condition (4.9), this proposition implies
that 5-CGSs K1 and K2 are isomorphic if and only if their graphs g(K1) and g(K2) are isomorphic.

Theorem 4.4. The set K(S) contains precisely 15 pairwise nonisomorphic elements.

Proof. By definition, a 5-CGS contains at least 4 distinct indices. If a 5-CGS K0 contains
precisely 4 distinct indices, then its hypergraph is unique up to isomorphism; thus we will assume
that K0 = (J1, J1, J2, J3, J4) and its hypergraph g0 = g(K0) = (V (K0), E(K0)) is as follows:

V (K0) = {J1, J2, J3, J4}, E(K0) = {{J1, J2}, {J1, J3}, {J1, J4}}.

If K contains 5 distinct indices, then g(K) has 5 vertices and has no cycles of length 3. As
is known [14], there exist precisely 14 pairwise nonisomorphic simple graphs g1, . . . ,g14 with 5
vertices, containing no cycles of length 3. Respectively, by Proposition 4.1, there exist precisely
14 pairwise nonisomorphic hypergraphs G1, . . . , G14 possessing this property and satisfying condi-
tion (4.9). Since they all are not isomorphic to the hypergraph G0 = G(K0), it follows that the
number of pairwise nonisomorphic 5-CGSs is at most 15.

Let us consider the hypergraphs G0, . . . , G14. By Theorem 3.1, for every k = 0, . . . , 14 there is a
number mk ∈ N and sets Dk

1 , . . . D
k
mk

such that the hypergraph Gk is isomorphic to the hypergraph
of MCSs of the inclusion system

x ∈ Dk
j (j ∈ Nmk

). (4.10)

Since the hypergraphs G0, . . . , G14 contain no cycles of length 3, Theorem 3.2 implies that the
number of elements in a minimum committee solving the system (4.10) equals 5; besides this,
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the only 5-CGS of the system (4.10) is Kk such that G(Kk) ∼= Gk for every k = 0, . . . , 14. By
construction, G0, . . . , G14 are pairwise nonisomorphic; therefore, K0, . . . ,K14 are also pairwise
nonisomorphic by the definition of isomorphism of 5-CGSs, and hence, the number of pairwise
nonisomorphic 5-CGSs equals 15.

The theorem is proved.

By the statements proved above, the set K(S) of all 5-CGSs is partitioned into 15 equivalence
classes of pairwise nonisomorphic 5-CGSs, according to the number of pairwise nonisomorphic
simple graphs which are admitted by the definition of a 5-CGS. However, in applied problems, as a
rule, we will be interested in the number of equivalence classes in the set K(S ′) for some subset S ′

of the set of all inclusion systems. It is natural to suppose that for sufficiently small S ′ a result valid
for K(S) is not valid for K(S ′). Indeed, if SL is the set of all finite systems of linear homogeneous
inequalities on the plane, then all elements of K(SL) are pairwise isomorphic, since the graph of
each 5-CGSs is a simple cycle of length 5. It is interesting that already for the set SQ of all finite
systems of polynomial inequalities of degree at most 2 on the plane, the conclusion of Theorem 4.4
is not valid.

Theorem 4.5 ([15]). The set K(SQ) contains precisely 15 pairwise nonisomorphic elements.

5. ESTIMATES FOR A MINIMUM COMMITTEE

In this section, we consider the issue of estimates of the number of elements in the minimum
committee for an inconsistent inclusion system

x ∈ Dj (j ∈ Nm), (5.1)

where Dj are some sets of an arbitrary set X.
Denote by M≥0

m,n the set of all nonnegative m× n matrices, and by M±1
m,n the set of all possible

m×n matrices whose elements belong to the set {+1,−1}. Let En, Em . . . denote identity matrices
of corresponding dimensions. For any m × n matrix C, the matrix norms ‖C‖l1 and ‖C‖1 are
defined as follows:

‖C‖l1 =
∑

i∈Nm, j∈Nn

|cij |, ‖C‖1 = max
1≤j≤n

m∑

i=1

|cij |.

The problem of finding the minimum committee can be reduced to solving the problem (1.8).
Let us rewrite it in the following form, which is convenient for further reasoning:

min

{
n∑

i=1

zi | Az > 0, z ∈ Zn
+

}
, (5.2)

where A ∈M±1
m,n. Since the optimal vector in the problem (5.2) determines multiplicities of distinct

elements of the minimum committee, we will call it the minimum committee.
Let us consider separately the constraints of the problem (5.2):

Az > 0. (5.3)

Let the system (5.3) be consistent. In the sequel, we will suppose that for the system (5.3) the
following condition is fulfilled:

(Az > 0) =⇒ (z > 0). (5.4)
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This restriction implies that any committee of the system (5.1) is composed of solutions of all,
without exception, maximal consistent subsystems. There are known classes of inclusion systems
for which fulfillment of condition (5.4) is guaranteed2. In the general case, condition (5.4) is
rather restrictive. Nevertheless, in a number of cases when the set X is not finite, it is difficult to
obtain solutions of all maximal consistent subsystems; instead of this, solutions of some consistent
subsystems of the system (5.1) are computed. Then, the corresponding problem of the form (5.2),
which leads to an approximate solution of the initial problem, can be posed with the help of
some minimal set of solutions of consistent subsystems, which is sufficient for constructing at least
one committee, since, as shown below, condition (5.4) is automatically fulfilled. In addition, any
solvable problem of the form (5.2) can be reduced, generally speaking with loss of accuracy, to a
problem for which condition (5.4) is fulfilled. This is confirmed by the following theorem.

Theorem 5.1. For a matrix A ∈M±1
m,n, the following conditions are equivalent.

(a) the system Az > 0 has at least one nonnegative solution;

(b) there exists a subindex σ = {j1, j2, . . . , jk} ⊂ Nn such that for the submatrix A(σ) =
[a∗j1a∗j2 . . . a∗jk ] ∈ Mm,k composed of the columns of the matrix A with numbers from σ,
the system A(σ)z > 0 is consistent and for any of its solution z̄ it follows that z̄ > 0;

(c) there exists a subindex σ = {j1, j2, . . . , jk} ⊂ Nn such that for the submatrix A(σ) =
[a∗j1a∗j2 . . . a∗jk ] ∈ Mm,k composed of the columns of the matrix A with numbers from σ,

the system A(σ)z > 0 is consistent and there exists a nonnegative matrix B ∈ M≥0
k,m such

that BA(σ) = Ek.

Proof. Let us carry out the proof by the following plan: (a) ⇒ (b), (b) ⇒ (c), (c) ⇒ (a).

(a) ⇒ (b) Consider the system
Az > 0. (5.5)

Let the set of nonnegative solutions of the system (5.5) be nonempty. Select σ as follows. Con-
sider a nonnegative solution z̄ with the least possible number of positive components. Define
σ ={j ∈ Nn | z̄j > 0}= {j1, j2, . . . , jk}. Let A(σ) = [a∗j1a∗j2 . . . a∗jk ] ∈ Mm,k be composed of the
columns of the matrix A with the numbers from σ. Let z̄(σ) = [z̄j1 , z̄j2 , . . . , z̄jk ]T be a vector
composed of nonzero components of z̄. Consider the system A(σ)y > 0. It is consistent, by
construction. Let us show that for any its solution y the inequality y > 0 holds. Suppose
the contrary. Let A(σ)ỹ > 0, but the set F = F ′⋃F ′′, where F ′ = {s ∈ Nk | ỹs < 0} and
F ′′ = {s ∈ Nk | ỹs = 0}, is nonempty. If F ′ = ∅, then taking z∗ ∈ Rn such that z∗js = ỹs for all
js (s ∈ Nk) and z∗j = 0 for j 6∈ σ, we obtain a nonnegative solution of the system (5.5) such that it
has less positive components than z̄ has. If F ′ 6= ∅, then we find λ′ = max{λ | z̄(σ)+λỹ ≥ 0, λ > 0}.
Define z = z̄(σ) + λ′ỹ. From the choice of λ′ it follows that there is s ∈ Nk such that zs = 0. On
the other hand, A(σ)z > 0. Consequently, by the above method one can find a solution of the
system (5.5) having less positive components than z̄ has. Thus, we showed that the condition
A(σ)y > 0 implies y > 0.

(b) ⇒ (c) Let us verify that in this case the condition A(σ)y ≥ 0 implies y ≥ 0. Now, let ỹ be such
that A(σ)ỹ ≥ 0 and F = {s ∈ Nk | ỹs < 0} 6= ∅. Then, there exists λ′ = max{λ | z̄(σ) + λỹ ≥
0, λ > 0}; hence, z = z̄(σ) + λ′ỹ, thus A(σ)z > 0 and zs = 0 for some s ∈ Nk. As shown above,

2This property is possessed, e.g., by inconsistent systems of strict linear homogeneous inequalities on the plane.
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this contradicts the choice of σ. Since any solution of the system A(σ)y ≥ 0 is nonnegative, by
the Farkas–Minkowski theorem the unit basis vectors e1, e2, . . . , ek ∈ Rk can be represented in
the form of nonnegative linear combinations of the rows a(σ)1∗, a(σ)2∗, . . . , a(σ)m∗ of the matrix
A(σ): ei =

∑m
j=1 βija(σ)j∗, βij ≥ 0, i ∈ Nk, j ∈ Nm. Define the matrix B = (βij) ∈ M≥0

k,m. By
construction, BA(σ) = Ek.

(c) ⇒ (a) If the system A(σ)y > 0 is consistent and there exists a nonnegative matrix B ∈ M≥0
k,m

such that BA(σ) = Ek, then any its solution is strictly positive and, consequently, can be extended
in an obvious way to a nonnegative solution of the system (5.5).

The theorem is proved.

Corollary 5.1. Conditions (5.4) and “(Az > 0, z ≥ 0) =⇒ (z > 0)” are equivalent.

Remark 5.1. In the general case, the index σ is not uniquely defined as well as the matrix B
for a given σ. The above theorem implies that for A ∈ Mm,n condition (5.4) is equivalent to the
existence of a nonnegative matrix B ∈M≥0

n,m such that BA = En.

Remark 5.2. Suppose that B1, B2, . . . , Bs ∈ M≥0
n,m and BiA = En for any i ∈ Ns; then, for

any λ1 ≥ 0, λ2 ≥ 0, . . . , λs ≥ 0 such that
s∑

i=1
λi = 1, the matrix B =

s∑
i=1

λiBi ∈M≥0
n,m satisfies the

condition BA = En.

The general case.

As mentioned above, throughout the sequel of the paper we will assume that for the system
(5.3) condition (5.4) is fulfilled (then, it is seen that m ≥ n). This leads to a number of assertions.

Assertion 5.1. If z1 and z2 are solutions of the system (5.3) and Az1 ≤ Az2, then z1 ≤ z2.

Proof. Indeed, by virtue of (5.4) for A ∈M±1
m,n there exists a nonnegative matrix B ∈M≥0

n,m such
that BA = En. Since the vectors Az1 and Az2 are strictly positive and the inequality Az1 ≤ Az2
holds, it follows that BAz1 ≤ BAz2, or z1 ≤ z2.

Assertion 5.2. If some solution z∗ of the system (5.3) is such that (aj∗, z
∗) = 1 for all

j ∈ Nm, then z∗ is a solution of the problem (5.2), i.e., it is a minimum committee.

Proof. By virtue of the specific character of the problem (5.2), namely by the integrality
condition, for any admissible vector z and any j ∈ Nm the inequality (aj∗, z) ≥ 1 must hold. Then,
from Assertion 5.1 for any admissible z it follows that z∗ ≤ z, or

∑n
i=1 z

∗
i ≤

∑n
i=1 zi. Consequently,

z∗ is optimal.

The following assertion and its corollaries give an estimate from below for the number of elements
in a minimum committee.

Assertion 5.3. For any integer-valued solution z ∈ Zn
+ of the system (5.3) and any matrix

B ∈ M≥0
n,m such that BA = En, the inequality z ≥ dBee holds, where e is the vector composed of

units.

Proof. Let z∗ ∈ Zn
+ be a solution of the system (5.3). For all j ∈ Nm the inequality (aj∗, z

∗) ≥ 1
holds, i.e., Az∗ ≥ e. For A, consider arbitrary B ∈M≥0

n,m such that BA = En. Then, z∗ = BAz∗ ≥
Be. Since z∗i ≥ (Be)i for any i ∈ Nn and z∗ ∈ Zn

+, we obtain z∗i ≥ d(Be)ie, whence z∗ ≥ dBee.
Corollary 5.2. If αi = max

B∈M≥0
n,m , BA=En

d(Be)ie for i ∈ Nn, then every solution z̄ of the system

(5.3) is estimated from below as follows: z̄ ≥ [α1, α2, . . . , αn]T ; the number of elements in a minimum
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committee is estimated from below by
n∑

i=1
αi.

Assertion 5.4. If some z̄ ∈ Zn
+ and J ⊆ Nm are such that (aj∗, z̄) = b̄j > 0 for any j ∈ J

and for all j 6∈ J (if Nm \ J 6= ∅) it follows that (aj∗, z̄) ≤ 0, then for the optimal vector z∗ of the
problem (5.2) there is j′ ∈ J such that (aj′∗, z

∗) ≤ b̄j′.

Proof. Suppose that for the optimal vector z∗ of the problem (5.2) and any j ∈ J the inequality
(aj∗, z

∗) > b̄j holds. Then, by assumption, Az∗ > Az̄. Let z = z∗ − z̄. It follows that Az =
Az∗ −Az̄ > 0, consequently, z > 0, z∗ ≥ z, and z∗ 6= z. This contradicts the optimality of z∗.

Corollary 5.3. If for some z̄ ∈ Zn
+ and subset I ⊂ Nm (I 6= Nm), and for any j ∈ I the

relation (aj∗, z̄) = b̄j > 0 holds, and for any j 6∈ I it follows that (aj∗, z̄) = 0, then for the minimum
committee z∗ (a solution of (5.2)) there is j ∈ I such that (aj∗, z

∗) < b̄j.

Corollary 5.4. If z̄ ∈ Zn
+ is such that (aj′∗, z̄) = 2 for some j′ ∈ Nm and (aj∗, z̄) = 0 for the

remaining j 6= j′, then for the minimum committee z∗ we have (aj′∗, z
∗) = 1.

Corollary 5.5. If z̄ is optimal in the problem (5.2), then min
1≤j≤m

(aj∗, z̄) = 1.

Assertion 5.4 and its corollaries may be useful for refinement of the constraints in the problem
(5.2) and for assignment of correct restrictions.

Fulfillment of condition (5.4) allows one not only to determine lower bounds on the number of
elements in a minimum committee, but also to obtain constructive upper bounds.

Theorem 5.2. Let for a matrix A ∈ M±1
m,n condition (5.4) be fulfilled; as a consequence,

the set MA
n,n of all possible nonsingular n × n submatrices of the matrix A is nonempty. If α =

max
Ã∈MA

n,n

‖Ã−1‖l1 , then the number of elements in a minimum committee is at most

⌊
n(α+ 1)

2

⌋
.

Proof. Let us consider the problem

min

{
n∑

i=1

zi | (aj∗, z) ≥
1
2
(n+

n∑

i=1

aji), j ∈ Nm

}
. (5.6)

Its admissible set is convex and polyhedral. Note that in the right-hand sides of constraint
inequalities, positive numbers occur (any row of the matrix A contains at most n − 1 negative
entries, else (5.2) is unsolvable). Let the problem (5.6) have a solution z∗ (by condition (5.4),
z∗ > 0). The rank of the constraint system is equal to the dimension of the space; therefore, without
loss of generality, we suppose that (aj∗, z

∗) = 1
2(n +

∑n
i=1 aji) for all j ∈ I = {1, 2, . . . , n} ⊆ Nm

(subsystem of rank n). Denote by Ã the submatrix of A which corresponds to the subsystem I,
det Ã 6= 0 and there exists Ã−1. Then,

Ãz∗ =
1
2
(nEn + Ã)e and z∗ =

1
2
(nÃ−1 +En)e.

Let us estimate the sum of components of the vector z∗ (z∗ > 0):

n∑

i=1

z∗i =
1
2

n∑

i=1

[(nÃ−1 +En)e]i =
1
2

n∑

i=1

∣∣[(nÃ−1 +En)e]i
∣∣ ≤ 1

2

n∑

i,j=1

∣∣(nÃ−1 +En)ij
∣∣
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=
1
2
‖nÃ−1 +En‖l1 ≤ 1

2
(n‖Ã−1‖l1 + ‖En‖l1) =

n

2
(‖Ã−1‖l1 + 1) ≤ n

2
(α+ 1). (5.7)

Now, let us consider z̄ = bz∗c and z = z∗ − z̄ (0 ≤ z < e). For arbitrary j ∈ Nm, the following
relations hold:

(aj∗, z̄) = (aj∗, z
∗) − (aj∗, z) =

1
2
(n+

n∑

i=1

aji) −
∑

aji=+1

ajizi

+
∑

aji=−1

ajizi >
1
2
(n+

n∑

i=1

aji) −
∑

aji=+1

aji =
1
2
(n+

∑

aji=−1

aji −
∑

aji=+1

aji) =
1
2
(n− n) = 0.

Thus, z̄ ∈ Zn
+ and Az̄ > 0. On the other hand, 0 ≤ z̄ ≤ z∗, whence

∑n
i=1 z̄i ≤

∑n
i=1 z

∗
i . If

the number of elements of the minimum committee equals 2q − 1, then, taking into account the
estimate (5.7), we obtain

2q − 1 ≤
n∑

i=1

z̄i ≤
n

2
(α+ 1).

These inequalities and the fact that z̄ is integer-valued imply the validity of the theorem.
The theorem is proved.

Theorem 5.3. Let β = 1
2(n + max

j∈Nm

n∑
i=1

aji). If α∗ is the optimum for the problem (5.2)

without the integrity requirement and αc is the number of elements of the minimum committee,
then αc ≤ βα∗.

Proof. Consider two problems

min{
n∑

i=1

zi | (aj , z) ≥ 1, j ∈ Nm}, (5.8)

min{
n∑

i=1

zi | (aj , z) ≥ β, j ∈ Nm}. (5.9)

If z∗ is optimal in the problem (5.8), then βz∗ is optimal in the problem (5.9). By the same
reasoning as in the proof of Theorem 5.2, for the vector z̄ = bβz∗c, the relations z̄ ∈ Zn

+ and
Az̄ > 0 hold. Consequently, if the number of elements of the minimum committee equals αc, then

α∗ =
n∑

i=1

z∗i ≤ αc ≤
n∑

i=1

z̄i ≤ β
n∑

i=1

z∗i = βα∗,

whence we obtain the assertion of the theorem.
The theorem is proved.

Corollary 5.6. The vector z̄ obtained in the proof of Theorem 5.3 can be considered as an
approximate solution of the problem (5.2) such that the sum of its entries is at most β times the
number of elements of the minimum committee.

In the sequel, we need the following well known facts [7]:

(1) For any A ∈M±1
n,n there is M ∈ Z such that detA = M2n−1;

(2) If the system Ax = b is such that A ∈ M±1
m,n (n ≥ m), all the components of the vector b

are either even or odd, and detB = ±2m−1 for any basis B, then any its basis solution is
integer-valued.
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Consider two problems

min

{
n∑

i=1

zi | Az ≥ e, z ∈ Zn
+

}
, (5.10)

min

{
n∑

i=1

zi | Az ≥ e

}
. (5.11)

Suppose that they are solvable and for the matrix A ∈ M±1
m,n there exists B ∈ M≥0

n,m such that
BA = En. Denote by α∗ the optimal value and by z∗ the optimal vector of the problem (5.11).

Theorem 5.4. If for any nonsingular submatrix Ā ∈ M±1
n,n of the matrix A it follows that

det Ā = ±2n−1, then the number of elements of the minimum committee equals α∗.

Proof. The rank of constraints equals n in both problems, then for some nonsingular submatrix
Ā of the matrix A we have the relation Āz∗ = [1, 1, . . . , 1]T . Since det Ā = ±2n−1 and the
components of the right-hand side are odd, it follows that z∗ is integer-valued and, in addition,
z∗ > 0. Consequently, the vector z∗ defines the minimum committee with α∗ elements.

The theorem is proved.

Theorem 5.5. If the vector b∗ = Az∗ ≥ e in the problem (5.11) is such that for some γ ∈ N
the vector γb∗ is integer-valued and if there exists a nonsingular submatrix Ā ∈M±1

n,n of the matrixA
such that det Ā = ±2n−1, then the number of elements in a minimum committee is at most 2γα∗.

Proof. Define b̄∗ = Āz∗. By assumption, the vector γb̄∗ is integer-valued. If all the components
of the vector γb̄∗ are simultaneously even or odd, then γz∗ = γĀ−1b̄∗ > 0 is integer-valued. In this
case, the minimum committee contains at most γα∗ elements. If some components of the vector
γb̄∗ are even, and the remaining are odd, then the vector 2γz∗ > 0 is integer-valued; consequently,
the number of elements of the minimum committee is at most 2γα∗.

The theorem is proved.

Remark 5.3. In Theorem 5.5, the vectors γz∗ or 2γz∗ can be considered as approximate
solutions of the minimum committee problem with the error γ or 2γ, respectively.

The case of a square matrix.

Now, let us consider the class of problems of the form (5.2), where the matrix of the system
is square. Fulfillment of condition (5.4) implies the existence of A−1 ∈ M≥0

n,n. In this case, under
additional conditions the optimal vector can be found in a polynomial time. In the general case,
its approximation with a guaranteed estimate on the error.

Theorem 5.6. If A ∈ M±1
n,n, there exists A−1 ∈ M≥0

n,n, and detA = M2n−1, then for the
number of elements 2q − 1 (q ∈ N) of a minimum committee, the two-sided estimate holds:

‖A−1‖l1 ≤ 2q − 1 ≤ 2 |M | ‖A−1‖1

⌊
n− 1

2

⌋
+ 1. (5.12)

Proof. Let us study the structure of the matrix A−1. For any i, j ∈ Nn the absolute value of
the element aadj

ij of the adjugate matrix is equal to mij2n−2, where mij ∈ Z+. Then A−1 has the

form A−1 = 0.5 | M |−1 (mij). Let x∗j = 2 | M | A−1ej ∈ Zn
+, where ej = [0, . . . , 0,

j
1, 0, . . . , 0]T

(j ∈ Nn). Then,

max
1≤j≤n

n∑

i=1

x∗ij = max
1≤j≤n

n∑

i=1

mij = 2 |M | ‖A−1‖1. (5.13)
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Assertion 5.3 implies that for the optimal vector z∗ of the problem (5.2) the inequality z∗ ≥⌈
A−1e

⌉
≥ A−1e holds. For the number of elements of the minimum committee, this gives

2q − 1 =
n∑

i=1

z∗i ≥
n∑

i,j=1

a−1
ij = ‖A−1‖l1 . (5.14)

From necessary conditions of the existence of a committee it follows that in A there is a column
a∗j∗ more than a half of whose entries are units. Let I = {i ∈ Nn : aij∗ = 1}, then

|Nn \ I| ≤
⌊
n− 1

2

⌋
.

Consider z̄ = ej∗ + 2 |M | A−1∑
i∈Nn\I ei, x̄ ∈ Zn

+ such that

Az̄ = Aej∗ + 2 |M | AA−1
∑

i∈Nn\I
ei = a∗j∗ + 2 |M |

∑

i∈Nn\I
ei > 0.

Consequently, the vector z̄ is a solution of the system Az > 0. Let us calculate the sum of its
entries. Since the sum of entries of the vector 2 | M | A−1ej does not exceed 2 | M | ‖A−1‖1, as a
result, we obtain

n∑

i=1

z̄i ≤ 2 |M | ‖A−1‖1|Nn \ I| + 1 ≤ 2 |M | ‖A−1‖1

⌊
n− 1

2

⌋
+ 1.

If 2q−1 is the number of elements in the minimum committee, then 2q−1 ≤
∑n

i=1 z̄i, which implies
the upper bound.

The theorem is proved.

Remark 5.4. Finding M and solving the given system Az = 2|M |
∑

i∈Nn\I ei can be carried
out in the time O(n3), see [1]. Consequently, in this time one can find an approximate solution
to the problem on the minimum committee z̄. The upper and the lower bounds from the theorem
determines the value of the error which is strictly less than 2 |M |.

Remark 5.5. One can present an infinite (for any n = 2t − 1, t ∈ N) series of examples such
that the two-sided estimate from Theorem 5.6 is sharp both from below and above; such a series
is produced by inconsistent systems of linear homogeneous inequalities on the plane.

Theorem 5.7. If in the problem (5.2) A ∈ M±1
n,n, |detA| = 2n−1, and A−1 ∈ M≥0

n,n, then a
minimum committee is found in the time O(n3).

Proof. It is obvious that under these assumptions the minimum committee is determined as the
solution of the system Az = e. Since |detA| = 2n−1 and A−1 ∈ M≥0

n,n, then the vector z∗ = A−1e

is integer-valued and nonnegative. Therefore, z∗ is the solution of the problem (5.2). The cost of
computing z∗ is only due to solving the given system Az = e, which needs the time O(n3), see [1].

The theorem is proved.

Theorem 5.8. If in the problem (5.2) A ∈M±1
n,n is such that A−1 ∈M≥0

n,n and |detA| = 2n−1,
then the whole set of committees (the set of solutions of the system (5.3) such that the sum of entries
is odd) is representable in the form

z = p0 +
n∑

i=1

αipi, (5.15)
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where p0 = A−1e, pi = 2A−1ei, αi ∈ Z+, i ∈ Nn.

Proof. Let T+ = {y = e + 2u | u ∈ Zn
+} and let C = {z ∈ Zn

+ | Az ∈ T+} denote the set
of all committees. Let us show how to determine parameters αi in the presentation (5.15) for an
arbitrary element of the set C. Let z̄ ∈ C, then Az̄ = b̄ ∈ T+. Consequently, b̄ = 2ū + e for

some ū ∈ Zn
+. In turn, ū =

n∑
i=1

ξiei, where ξi ∈ Z+ (i ∈ Nn). This gives b̄ = e + 2
n∑

i=1
ξiei and

z̄ = A−1e+ 2
n∑

i=1
ξiA

−1ei. For all i ∈ Nn define ᾱi = ξi. Thus, z̄ = p0 +
n∑

i=1
ᾱipi.

Suppose now that some z is defined by formula (5.15). If, besides T+, we introduce the set
P+ = {y = 2w | w ∈ Zn

+}, then in these notations, by the nonnegativity of A−1, for any v ∈ T+

and w ∈ P+ the inequalities A−1v > 0 and A−1w ≥ 0 hold. Therefore, it is seen that p0 > 0 and
pi ≥ 0 for all i ∈ Nn. From αi ≥ 0 it follows that z > 0. Since e, 2e1, 2e2, . . . , 2en ∈ T+ ∪ P+, we
obtain p0, p1, . . . , pn ∈ Zn

+; hence, z is integer-valued (αi ∈ Z+). Thus, all entries of the vector z
are natural numbers. Let us verify that Az > 0. Indeed,

Az = A

(
p0 +

n∑

i=1

αipi

)
= e+ 2

n∑

i=1

αiei > 0.

It is seen that the sum of entries of the vector p0 is odd and of the vector pi is even for any i ∈ Nn.
This implies that the sum of entries of the vector z is odd. Consequently, Az ∈ T+ and z ∈ C.

The theorem is proved.

6. COMMITTEE DECISION RULES

Committee constructions are intensely used in solving pattern recognition problems. Relevant
recognition algorithms in the literature are called committee decision rules or separating commit-
tees. We consider some of their properties. Let us fix a real linear space X, which is further called
the space of object descriptions, and a finite set Ω of numbers (labels) of patterns. Without loss
of generality, we consider the two-classes recognition problem, setting Ω = {0, 1}, where 1 denotes
belonging to the first pattern and 0 to the second one. Let on the set X × Ω a sigma-algebra of
events Σ and a probability measure P, defined up to a finite sample (learning sequence)

(x1, ω1), (x2, ω2), . . . , (xl, ωl), (6.1)

be given. Let us fix a set of characteristic functions

F = {f(x;α) | α ∈ Λ} ⊂ {X → Ω},

which is called a class of decision rules. The problem of learning to pattern recognition is [2] the
optimization problem

min
{
P (α) =

∫

X×Ω

(ω − f(x;α))2 dP (x, ω) : α ∈ Λ, (x1, ω1), (x2, ω2), . . . , (xl, ωl)
}
, (6.2)

in which the value of the functional P (α), called the average risk functional, is equal to the
probability of a classification error for the rule f(·;α). Apparently, the main obstacle arising when
solving the problem (6.2) is the “indeterminacy” of the objective functional defined up to a finite
sample. In fact, the problem is essentially multiobjective.
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One of the approaches to approximate solving the posed problem is based on approximating it
by the problem

min
α∈Λ

ν(α) =
1
l

l∑

i=1

(ωi − f(xi;α))2, (6.3)

in which the value of the functional ν(α), called the empirical risk functional, equals the frequency
of classification errors, computed for the learning sequence (6.1), and does not explicitly depend on
the “indeterminate” measure P. Obviously, the problem (6.3) is solvable for Λ 6= ∅ and any sample
(6.1). Its optimal value characterizes the “learning” ability of the decision rules class F . Intuitively,
it is clear that for sufficiently representable sample those of the two rules classes F1 and F2 is better
for which the optimum of the problem (6.3) is less. Let us introduce the notion of a committee
decision rule. To this end, we fix an odd number q and a class of rules F1 = {ϕ(x;β) | β ∈ B},
which will be called the base class. Denote by Θ the function of a real variable t, which takes the
value 1 for t > 0 and 0 otherwise.

Definition 6.1. A committee decision rule (separating committee) of q elements of the base
class F1 is the function

f(x;α) = f(x; (β1, β2, . . . , βq︸ ︷︷ ︸
=α

)) = Θ

( q∑

i=1

ϕ(x;βi) − q/2

)
.

Respectively, the set Fq = {f(x;α) | α ∈ Bq} is called a class committee rules of q elements.
Below, although it is not a matter of principle, we assume that q is odd.

Let us consider concrete classes of separating committees. As usual, denote by X∗ the space
of linear functionals on X. If B = X∗ and F1 = {Θ((a, x)) | a ∈ B}, then Fq is called a class of
linear separating committees of q elements and is denoted by Lq. Respectively, for B = X∗×R and
F1 = {Θ((a, x) + b) | a ∈ X∗, b ∈ R}, the class Fq is denoted by Aq and is called a class of affine
separating committees of q elements. In addition, we will use the following notations:

L≤q =
⋃

t≤q
Lt, A≤q =

⋃
t≤q

At,

L =
⋃

q∈N
Lq, A =

⋃
q∈N

Aq.

A direct consequence of Theorems 2.6 and 2.8 is the following conditions of vanishing the optimal
value of the problem (6.3).

Theorem 6.1.
(1) The optimal value of the problem (6.3), posed in the class L (in the class A), equals zero if and
only if for every subsample (xi1 , ωi1), (xi2 , ωi2) of the sample (6.1) there exists a rule f(·;β(i1, i2)) ∈
L1 ( f(·;β(i1, i2)) ∈ A1 ) such that

f(xi1 ;β(i1, i2)) = ωi1 ,

f(xi2 ;β(i1, i2)) = ωi2 .
(6.4)

(2) The validity of condition (6.4) implies the vanishing of the optimal value of the problem (6.3)
in the class L≤l (A≤l ).

Note that for the class L the assumptions of the theorem are equivalent to the following:

(i, j ∈ Nl) (t ≥ 0) ⇒ ((ωi − 1/2)xi + t(ωj − 1/2)xj 6= 0),
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and for the class A to the following:

(i, j ∈ Nl) (ωi 6= ωj) ⇒ (xi 6= xj).

Theorem 6.2. Let F1 ∈ {L1,A1}, and let a sample (6.1) and a natural number k

be such that for an arbitrary subsample (xi1 , ωi1), (xi2 , ωi2), . . . , (xik+1 , ωik+1) there is a rule
f(·;β(i1, . . . , ik+1)) ∈ F1, which solves the system





f(xi1 ;β) = ωi1 ,

f(xi2 ;β) = ωi2 ,

. . .

f(xik+1 ;β) = ωik+1 ,

(6.5)

then the optimal value for the problem (6.3), in the class F≤q for

q = 2
⌈b(l − k)/2c

k

⌉
+ 1,

equals zero.

Thus, classes of affine and linear separating committees are a highly useful tool for solving
recognition problems, which allows one to take into account learning information of any complexity.

However, let us return to the issue of approximation of the problem (6.2) by the problem
(6.3). Let us fix a sample (6.1), denote by α∗((x1, ω1), . . . , (xl, ωl)) the optimal solution of the
problem (6.3), and calculate P (α∗). Let P̄ be the optimal value for the approximated problem,
which characterizes the probability of irreducible classification error in the class F .

Definition 6.2. We will say that the problem (6.3) correctly approximates the problem (6.2)
if uniformly with respect to samples of length l the following condition is satisfied:

P (α∗) P−→
l→∞

P̄ . (6.6)

It should be noted that although by the law of large numbers for every α ∈ Λ one has
ν(α) P−→

l→∞
P (α); however, condition (6.6) may not be fulfilled. As shown in [3], a sufficient condition

for (6.6) to hold is the condition of the uniform, with respect to the events class, convergence of
frequency to probability.

Definition 6.3. Let S = {A(α) | α ∈ Λ} be a subset of the sigma-algebra of events. We will
say that there exists a uniform with respect to the class S convergence of frequency to probability
(in probability) if for any ε > 0

P (sup
α∈Λ

|P (A(α)) − ν(A(α))| > ε) −→
l→∞

0.

Below, our interest will turn to the existence conditions for a uniform convergence of the
frequency of occurrence to the probability of specified classes of events

SF1 = {B(β) = {(x, ω) | ω 6= ϕ(x;β)} | β ∈ B} (6.7)

and
SFq = {A(α) = {(x, ω) | ω 6= f(x;α)} | α = (β1, β2, . . . , βq) ∈ Λ = Bq}, (6.8)
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generated by the classes F1 and Fq, respectively. A classical approach to the proof of sufficient
conditions for a uniform convergence is based on the following theorem.

Theorem 6.3 (Vapnik and Chervonenkis). Let F be a class of decision rules. For any ε ∈
(0, 1) there exists a number l(ε) ∈ N such that for every sample of length l > l(ε)

P (sup
α∈Λ

|ν(α) − P (α)| > ε) < 6mF (2l)e−
ε2l
4 .

Here, as usual, mF (l) denotes the growth function for the set of events SF . By definition, mF (l)
is a positive integer-valued function taking values from the interval [1, 2l]. Consequently, to justify
the uniform convergence it suffices to show that mF (l) grows slower than any exponential function
with the base greater than 1. The following estimate for the growth function: mF (l) < 1.5lh/h!,
which is valid for all l > h, where h ∈ N is such that mF (h) = 2h and mF (h + 1) < 2h+1. The
number h is called the capacity of the class of rules F (the Vapnik–Chervonenkis dimension) and
is equal to the greatest natural number l such that there exist vectors x1, x2, . . . , xl for which the
problem (6.3) in the class F has zero optimal value for any ω1, ω2, . . . , ωl ∈ {0, 1}.

Assertion 6.1.
(1) For the growth function mFq(l) of the class Fq of separating committees the following estimate
holds:

mFq(l) ≤
(
mF1(l)

)q
. (6.9)

(2) If in addition F1 ∈ {L1,A1}, then

mF≤q(l) ≤
(
mF1(l)

)q
. (6.10)

Note that estimates (6.9)–(6.10) are valid for classes of decision rules wider than classes of
separating committees; therefore, they are apparently overstated. However, for the class L≤q, the
estimate is of order of the best possible estimate expressed in terms of the class capacity. Indeed,
the following is true.

Theorem 6.4. Let X = Rn, then the capacity h(q, n) of the class L≤q is estimated from below
by q(n− 1) + 1.

Proof directly follows from Theorem 2.8.
In particular, it is known that h(q, 2) = q + 1. Using the estimate from the preceding theorem,

for sufficiently large l we have 1.5lq(n−1)+1/(q(n− 1) + 1)! ≤ 1.5lh(q,n)/h(q, n)!. On the other hand,
mL1(l) ≤ 3(l− 1)n−1/(n− 1)!, whence mL≤q(l) ≤ C(q)(l− 1)q(n−1), which is estimated from above
by 1.5lq(n−1)+1/(q(n− 1) + 1)! for sufficiently large l.

There is another approach to the proof of conditions of the uniform convergence for the class Fq

for arbitrary F1. Indeed, every event A(α) ∈ SFq for α = (β1, β2, . . . , βq) is defined by the relation

A(α) =
⋃

L⊂Nq, |L|=dq/2e

(⋂

i∈L

B(βi)

)
.

For the sample z(2l) = (z1, z2, . . . , z2l), where zi = (xi, ωi), denote by ν1(A) and ν2(A) the
frequencies of occurrence of an event A in the first and second (in order) semisamples, respectively.
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Lemma 6.1. Let the sets B(β1), B(β2), . . . , B(βq), and A(α) = A((β1, β2, . . . , βq=2s+1)) be
given. If the sample z(2l) is such that for every l ⊂ Nq with the condition |L| > s+ 1 the equalities

ν1

(⋂
i∈LB(βi) \

⋃
j 6∈LB(βj)

)
= ν2

(⋂
i∈LB(βi) \

⋃
j 6∈LB(βj)

)
and

ν1

(⋂
j 6∈LB(βj) \

⋃
i∈LB(βi)

)
= ν2

(⋂
j 6∈LB(βj) \

⋃
i∈LB(βi)

)
,

hold, then the inequality

|ν2(A(α) − ν1(A(α))| ≤ q max
i∈Nq

|ν2(B(βi)) − ν1(B(βi))|

is true.

Theorem 6.5. Let Λ = Bq, and let a measure P and a system of events {A(α) | α ∈ Λ} be
such that for every L ⊂ Nq,

(|L| > s+ 1) ⇒


P (

⋂

i∈L

B(βi) \
⋃

j 6∈L

B(βj)) = P (
⋂

j 6∈L

B(βj) \
⋃

i∈L

B(βi)) = 0


 .

Then, the following estimate holds:

P (sup
α∈Λ

|ν(A(α)) − P (A(α))| > qε) ≤ P (sup
β∈B

|ν(B(β)) − P (B(β))| > ε).

Corollary 6.1. Let a growth function mF1(l) of the class F1 be not identically equal to 2l

and let for the set of events {A(α)} the assumptions of the preceding theorem be fulfilled, then the
following estimate holds:

P (sup
α∈Λ

|ν(A(α)) − P (A(α))| > qε) < 6mF1(2l)e−
ε2l
4 .

7. CONCLUSION

Some more or less far-off analogies with the idea of committee constructions can be seen if
desired in rather early sources since the eighteenth century (see, for example, [19, 20]) and even
earlier if links between ideas are loosely interpreted. A rigorous mathematical formulation of the
notion of a committee appeared in 1965 in the work of Ablow and Kaylor [18] and it was connected
with the problem of distinguishing sets of objects. At the same time, in 1965, Vl. D. Mazurov —
one of the authors of the present paper — began to study committees. His work was initiated by
S. B. Stechkin and I. I. Eremin who paid attention to the potential significance of the notion of a
committee.

The problem of existence of surfaces separating sets in linear spaces is important in both pure
and applied mathematics. Finite sets in a linear space which are arbitrarily hard to separate
(nevertheless, disjoint) can be separated, evidently, by a piecewise affine rule. However, committees
allows one not only to avoid routine describing the structure of piecewise affine rules (thanks to the
elegance and brevity of the committee formula), but also to propose fruitful ways of their actual
construction. This facilitates a good interpretability and wide applicability of committee rules for
diagnostics and selection of variants of solutions.
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In the present paper, we provide precise analytical results on committees. They show that,
in addition to a certain practical value, the theory of committees is of considerable mathematical
depth. There are also perspectives of discovering new directions in investigation of committees
where absolutely new, interesting, and at the same time hard problems are revealed.

Among these problems, software implementations of committee constructions take not a sec-
ondary place. In this connection, we should mention the development of application software
packages KVAZAR and KVAZAR+ in IMM Ural Branch of the Russian Academy of Sciences,
which are actively used in solving applied problems (for example, in biology and medicine).

There are also other fields of applicability of the idea of committee constructions; for example,
collective solutions in mathematical economics, artificial multilayer neural networks, etc., whose
description is apparently out of the scope of this paper.
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